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Abstract

Point process is a common statistical model used to describe the pattern of event

occurrence for many real-world applications, such as earthquake prediction and fi-

nancial modelling. The prompting characteristics of past events on future ones are

a vital factor in the clustering effects in point processes. Hawkes process is the most

extensively used point process model for modelling self-exciting phenomena.

One of the key challenges for the Hawkes process is the selection of the func-

tion for modelling baseline intensity and the triggering kernel. The vanilla Hawkes

process assumes a constant valued function for the baseline intensity and a para-

metric stationary function for the triggering kernel. The parametric and stationary

assumption makes inference convenient but limits the model expression.

To generalize the classical Hawkes process, various nonparametric and nonsta-

tionary approaches for the Hawkes process are proposed in this thesis. Specifically,

three different nonparametric and nonstationary approaches for Hawkes processes

are proposed.

The model independent stochastic declustering (MISD) algorithm is a classical

frequentist nonparametric inference algorithm for Hawkes process with triggering

kernel and it uses a bin-based histogram function. However, the number of bins,

which is fixed manually, usually leads to underfitting or overfitting when improperly

ii



chosen. In this thesis, a refined MISD algorithm is proposed to ease the choice of

bin number.

Next, a Bayesian nonparametric Hawkes process model is proposed, with Gaus-

sian process as prior for baseline intensity and triggering kernel. Correspond-

ingly, a variational Gaussian approximation, Polya-Gamma based Gibbs sampling,

expectation-maximization (EM) and mean-field variational inference algorithms are

proposed.

As the next step, nonstationarity is introduced into the classical Hawkes process.

A fast cumulant-based multi-resolution segmentation algorithm is proposed that

partitions the process into segments to capture the time-varying characteristics.

Finally, future research directions for the nonparametric and nonstationary Hawkes

process are discussed.
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Chapter 1

Introduction

Point process is a common statistical model used to describe the pattern of event

occurrence for many real world applications, such as earthquake prediction [1] and

financial modelling [2]. The influence of past events on future ones is a vital factor

in the clustering effects of point processes. Many models have been proposed to

describe the interactions in a point process. Among those models, the Hawkes

process [3] is an important class of point processes that can be utilized to model the

self-exciting phenomenon in numerous application domains, including criminology

[4], ecosystem modelling [5], transport planning [6] and social networks analysis [7].

An important characteristic of point processes is the conditional intensity: the

probability of an event occurring in an infinitesimal time interval given the past

history. Specifically, the conditional intensity of Hawkes process may be expressed

as:

λ(t) = µ(t) +

∫ t

0

φ(t− s)dN(s) = µ(t) +
∑
ti<t

φ(t− ti), (1.1)

where µ(t) > 0 is the baseline intensity, {ti} are timestamps of events occurring

before t, N(t) is the corresponding counting process and φ(τ) > 0 where τ = t− ti
is the triggering kernel. The summation of triggering kernels explains the nature of

self-excitation: events occurring in the past intensify the rate of occurrence in the
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future.

The classic Hawkes process is supposed to have a parametric form: the baseline

intensity µ(t) is assumed to be a constant with triggering kernel φ(τ) a parametric

function, e.g. exponential decay or power law decay function. However, in reality,

the actual exogenous rate µ(t) can change over time due to the varying external

context; the actual endogenous rate capturing how previous events trigger posterior

ones, modelled by φ(τ), can be rather complex among different applications. For

example, the exogenous rate of civilian deaths due to insurgent activity is changing

over time [8] and the prompting effect of vehicle collision decays periodically and

in an oscillatory way [9]. Models based on the classic Hawkes process tend to be

oversimplified or even incapable of capturing the ground truth in numerous scenarios.

To address this, it is necessary to estimate the exogenous and endogenous dynamics

in a data-driven nonparametric way.

A wide variety of nonparametric estimation approaches for Hawkes process have

been investigated over the past few years [8, 10, 11, 12]. Basically, there are two cat-

egories: frequentist nonparametric, which is based on likelihood only, and Bayesian

nonparametric, which needs to incorporate a prior. From the frequentist nonpara-

metric perspective, it was initially proposed [1] to estimate the triggering kernel

modelled as a histogram function using an EM algorithm; this was later extended

[8] by introducing a smooth regularizer and estimation was performed by solving an

Euler-Lagrange equation. This approach was further extended [10] to the multivari-

ate Hawkes process. An estimation approach based on the solution of a Wiener-Hopf

equation, relating the triggering kernel with the second order statistics of its counting

process was proposed [11]; other efforts [12, 13] attempted to minimize a quadratic

contrast function with a grid based triggering kernel.

From the Bayesian nonparametric perspective, most related works are based on

Gaussian-Cox processes: the Poisson process with a stochastic intensity modulated

by Gaussian process (GP). To guarantee the non-negativity of intensity, trajectories
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drawn from a GP prior need to be squashed by a link function. For example, a

log-Gaussian intensity was utilized [14, 15]; a sigmoid-GP intensity and a tractable

Markov chain Monte Carlo (MCMC) algorithm has also been proposed [16]; a vari-

ational Gaussian approximation algorithm with a square link function has been

developed [17]. As far as is known, only a few works have attempted to infer the

nonparametric Hawkes process from a Bayesian perspective, as the Hawkes process

is more complex than the Poisson process. For example, a Bayesian nonparametric

estimation method for Hawkes process is available [18], in which the baseline inten-

sity is assumed to be a constant and the prior on the triggering kernel is based on

a piecewise constant function or a mixture of Beta distributions.

Another issue with the classic Hawkes process is the stationary assumption. It is

straightforward to see that the conditional intensity (Eq. 1.1) of the Hawkes process

is unchanged over timeshifting if µ(t) is constant and φ(·) only depends on τ = t− ti
not on t, which defines stationarity. The assumption of stationarity leads to reduced

model complexity and straightforward inference. However, the point process data

generated in many real applications has non-stationary properties, which means

that its first, second and higher order cumulants (moments) are changing over time.

Applying the vanilla Hawkes process directly to non-stationary data is inappropriate.

On the other hand, non-stationarity itself can be an important feature in some

applications. For example, in transportation, the influence of the road condition on

car accidents changes between day and night and between busy and non-busy hours

(see Fig. 1.1).

One of the common methods of analyzing non-stationarity is the use of segmen-

tation. This type of problem is also called a change-point problem that is studied

in mathematics [19]. Given a non-stationary point process data, the segmentation

algorithm will divide the whole observation period into several non-overlapping con-

tiguous segments in such a way that each segment is more approximately stationary

than the original data and can be assumed to be stationary.
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Figure 1.1: Multi-resolution segmentation showing the influence of road condition
on car accidents. The influence is low between 2:00-6:00; medium between 6:00
and 8:00, 20:00 and 2:00; high between 8:00 and 20:00. The green dash provides
a low-resolution segmentation (2 segments) and together with purple dash provide
a high-resolution segmentation (4 segments), providing hierarchical insight into the
dynamic time-varying characteristics.

1.1 Contributions

This thesis focuses on the generalization of the Hawkes process to nonparametric

and non-stationary scenarios, thereby helping to solve real-world complex problems.

For the nonparametric Hawkes process: from the frequentist perspective, the

classic MISD algorithm is modified to ease the choice of hyperparameters; from the

Bayesian perspective, GP is utilized to modulate the baseline intensity and trigger-

ing kernel such that the two components can be in any form without parametric

constraint.

For the non-stationary Hawkes process: the cumulants of the Hawkes process are

utilized to propose a fast multi-resolution segmentation algorithm that partitions the

process into segments on which stationarity is satisfied.

1.2 Thesis Organization

The rest of the thesis is organized as follows.

In Chapter 2, background knowledge necessary to understand the later chapters
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is introduced, including Hawkes process, Gaussian process, branching structure and

cumulants of Hawkes process, existing parametric and nonparametric estimation

methods for Hawkes process, the EM algorithm and Bayesian inference (MCMC

and variational inference).

The MISD algorithm [8] is a classic EM algorithm for nonparametric Hawkes

process where the triggering kernel is modelled as a histogram function. The num-

ber of bins for the histogram function is a hyperparameter for the model that needs

to be fixed in advance. A small bin number means an over-simplified model leading

to underfitting, while a large number leads to overfitting. In Chapter 3, a Gaussian

process regression step is innovatively embedded into the EM iteration. Conse-

quently, the estimation result is stable regardless of the number of bins used in the

model.

Unlike the inference approach in Chapter 3, which is based on likelihood only

(frequentist method), a Bayesian nonparametric framework for the Hawkes process

is proposed in Chapters 4 and 5. In the Bayesian nonparametric framework, the

GP prior is incorporated for the baseline intensity and triggering kernel. To guar-

antee the non-negativity of intensity, trajectories drawn from a GP prior need to be

squashed by a link function. Due to the existence of the link function, the likelihood

is non-conjugate to the prior, resulting in a complex inference procedure. In Chapter

4, quadratic GP Hawkes process is proposed, whose baseline intensity and trigger-

ing kernel are the square transformation of random trajectories from the GP prior.

For the quadratic GP Hawkes process model, a variational Gaussian approximation

inference method is proposed to approximate the true posterior with a Gaussian

distribution.

In Chapter 5, the sigmoid GP Hawkes process is defined, where the link function

is a scaled sigmoid function. For the sigmoid GP Hawkes process model, the latent

Pólya-Gamma random variables and marked Poisson processes are augmented to

convert the likelihood into a conjugate form with the GP prior; consequently, the
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inference can be much faster and efficient.

In the methods presented in Chapters 3-5, the triggering kernel is assumed to be

unchanging over time-shifts, which is named stationarity. However, the triggering

influence can change over time in real applications. In Chapter 6, the triggering

kernel is assumed to be non-stationary. The key idea is to partition the process into

many small sectors on which the stationarity is to be satisfied, then the baseline

intensity and triggering kernel are estimated on each sector and these two charac-

teristics are compared for two adjacent sectors. If the characteristics are similar the

two sectors belong to the same segment, otherwise the two sectors should be cut

apart. However, this näıve idea is impractical, as the estimation of baseline intensity

and triggering kernel are time-consuming. Inspired by the Wiener-Hopf inference

method [11], the baseline intensity and triggering kernel are replaced with first and

second order cumulants of the Hawkes process. The result is a fast multi-resolution

segmentation algorithm for non-stationary Hawkes process.

In Chapter 7, the contributions of the thesis are summarised and some promising

research directions for future work are discussed.



Chapter 2

Background

In order to understand the subsequent chapters, the background knowledge of

Hawkes process, Gaussian process, EM algorithm and Bayesian inference need to

be explained. In this chapter, the background on techniques are reviewed. Specifi-

cally the background on the Hawkes process is introduced in Sec. 2.1, the Gaussian

process in Sec. 2.2, the EM algorithm is discussed in Sec. 2.3, and lastly, Bayesian

inference is reviewed in Sec. 2.4. The final section provides a summary of the chapter

contents.

2.1 Hawkes Process

The Hawkes process is a self-exciting point process first introduced by Hawkes in

1971 [3]. The future evolution of a self-exciting point process is influenced by the

timing of past events. The process is non-Markovian except for some special cases.

Thus, the Hawkes process depends on the entire past history and has a long memory.

The Hawkes process has wide applications in neuroscience, seismology, finance and

many other fields.

An important characteristic that characters a Hawkes process is the conditional

intensity function (Eq. 1.1). The likelihood of a Hawkes process is briefly introduced
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first. A Hawkes process is a stochastic process whose realization is a sequence of

timestamps D = {ti}Ni=1 ∈ [0, T ], where ti stands for the time of occurrence of the

i-th event with T being the observation window. Given µ(t) and φ(τ), the Hawkes

process likelihood [20] is defined as

p(D|µ(t),φ(τ)) =
N∏
i=1

µ(ti) +
∑
tj<ti

φ(ti − tj)

 · exp

(
−
∫
T

(
µ(t) +

∑
ti<t

φ(t− ti)

)
dt

)
.

(2.1)

2.1.1 Branching Structure of Hawkes Process

The Hawkes process has two equivalent interpretive counterparts. The first is the

intensity based version which models the rate of events through conditional intensity

function (Eq. 1.1, see Fig. 2.1). The alternative version is the cluster based version

where the Hawkes process can be interpreted as a superposition of Poisson processes.

Specifically, consider a Poisson cluster process C ([21], also see Fig. 2.1).

1. Let I be a realization of an inhomogeneous Poisson process with rate µ(t) on

the interval [0, T ]. All the points in I are called immigrants.

2. Each immigrant x ∈ I will generate an independent cluster of points Cx.

Each cluster Cx is generated according to the following branching structure:

the cluster Cx consists of generations of offspring of the immigrant x; given

the immigrant x and the offspring of generation n, each offspring of generation

n will produce its own offspring of generation n+1 by generating a realization

of an inhomogeneous Poisson process with rate φ(t− ti).

3. The superposition of all points in all clusters C =
∑

xCx will provide a Hawkes

process with baseline intensity µ(·) and triggering kernel φ(·).

From the Poisson cluster process counterpart, it is straightforward to see the def-

inition of the branching structure: which point is triggered by which point. More
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Figure 2.1: The conditional intensity and Poisson cluster interpretation of Hawkes
process. The blue solid function is the conditional intensity function. Blue points
are the immigrants, with red points being the first generation of offspring and green
points the second generation of offspring.

formally, given a realization of Hawkes process with N events, an N ×N lower tri-

angular matrix B is defined, with binary entry bij indicating whether the i-th event

is triggered by itself or by a previous event j.

bii =

1 if event i is a background event

0 otherwise

bij =

1 if event i is caused by event j

0 otherwise

(2.2)

For example, the branching structure matrix for Fig. 2.1 is

1 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0


.
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Generally speaking, the branching structure is a latent variable for a Hawkes

process, which means that it is not included in the observation. As can be seen

later, the branching structure is an ingenious latent variable, because the Hawkes

process likelihood can be decoupled into two independent factors after introducing

it. The joint likelihood of the observation and branching structure is

p(D,B|µ(t), φ(τ)) =
N∏
i=1

µ(ti)
bii exp

(
−
∫
T

µ(t)dt

)
·

N∏
i=2

i−1∏
j=1

φ(ti − tj)bij
N∏
i=1

exp

(
−
∫
Tφ

φ(τ)dτ

)
,

(2.3)

where Tφ is the support of the triggering kernel. It is straightforward to see that

the joint likelihood has already been decoupled to two independent components.

2.1.2 Cumulants of Hawkes Process

The cumulants of a Hawkes process are briefly described in this section. The detailed

derivation can be found in [11, 22]. Consider a 1-variate Hawkes process N(t) whose

jumps are all of size 1 and whose intensity at time t is λ(t). If {ti} denotes the

jump times of N(t), the λ(t) can be expressed as Eq. 1.1. If N(t) is stationary, the

following results are obtained. The first order cumulant (mean event rate) is

Λdt = E(dNt) =
µ

1−
∫
φ(τ)dτ

dt. (2.4)

The second order cumulant is

Cov(dNt1 , dNt2) = E(dNt1dNt2)− E(dNt1)E(dNt2). (2.5)
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Because N(t) is stationary, consequently, Cov(dNt1 , dNt2) only depends on τ = t2−t1
and can be expressed as

v(τ)dτ = E(dN0dNτ )− E(dN0)E(dNτ ). (2.6)

Or, it can be rewritten in terms of conditional expectations

g(τ)dτ = v(τ)dτ/Λ = E(dNτ |dN0 = 1)− Λdτ. (2.7)

As proved elsewhere [11], a stationary Hawkes process is uniquely defined by

its first and second order cumulants and there is a one-to-one mapping between its

second order statistics g(τ) and the triggering kernel φ(τ).

2.1.3 Inference Methods for Hawkes Process

The inference methods used for a Hawkes process are discussed below.

Maximum Likelihood Estimation The classical and easiest method to define

inference of a (parametric) Hawkes process is the maximum likelihood estimation

(MLE). Normally, a parametric form is assumed for the Hawkes process: constant

baseline intensity µ and parametric triggering kernel e.g. exponential decay kernel

α exp(−βτ) (α > 0, β > 0 and α < β) or power law kernel αβ
(βτ+1)1+γ

(α > 0, β > 0

and α < γ). The likelihood of a Hawkes process is already provided in Eq. 2.1. The

optimal parameters can be obtained by maximizing the log-likelihood

θ∗ = argmax
θ

logP (D|θ), (2.8)

where θ stands for parameters.
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Model Independent Stochastic Declustering The literature [8] provides de-

tails on the use of the MISD algorithm in a one dimensional Hawkes process, where

MISD is an EM-based nonparametric inference algorithm. Assume that the baseline

intensity is a constant µ and there is no prior knowledge about the form of φ(·).

The joint likelihood of the observation and branching structure can be written as

p(D,B|µ, φ(τ)) =
N∏
i=1

µbii exp (−µT )︸ ︷︷ ︸ ·
N∏
i=2

i−1∏
j=1

φ(ti − tj)bij
N∏
i=1

exp

(
−
∫
Tφ

φ(τ)dτ

)
︸ ︷︷ ︸ .

(2.9)

It is easy to see that, after introducing the branching structure, the joint likelihood

is decoupled into two independent factors: µ part and φ(·) part. Correspondingly,

the joint log-likelihood is

log p(D,B|µ, φ(τ)) =[
N∑
i=1

bii log(µ)

]
− µT +

N∑
i=2

[
i−1∑
j=1

bij log (φ(ti − tj))

]
−

N∑
i=1

∫
Tφ

φ(τ)dτ.
(2.10)

It is straightforward to rewrite this problem into an EM framework, which results

in the MISD algorithm. Because the branching structure is a latent variable, the

MISD algorithm works by maximizing the expectation of the log-likelihood.

µs+1, φs+1 = argmax
µ,φ

E
B∼p(B|µs,φs)

log p(D,B|µ, φ(τ)), (2.11)

where s indicates the s-th step in EM iterations. Therefore, bij in Eq. 2.10 is replaced

by pij, which is the posterior probability of event i caused by event j given µ and
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φ. The matrix pij is a lower triangular matrix:



p11

p21 p22

p31 p32 p33

...
. . .

pn1 pn2 pn3 · · · pnn


, (2.12)

where
∑i

j=1 pij = 1 because event i must be caused by previous events or by itself.

In summary, the EM iteration is

(1) E-step: the update for the matrix P :

psij =
φs(ti − tj)

µs +
∑i−1

j=1 φ
s(ti − tj)

psii =
µs

µs +
∑i−1

j=1 φ
s(ti − tj)

;

(2.13)

(2) M-step: the update for baseline intensity:

µs+1 =
1

T

n∑
i=1

psii. (2.14)

Assume that φ(τ) is an histogram function with the support Tφ uniformly divided

into M bins (bin width being ∆t), then the update for φ is given by

φs+1
m =

1

|Am|∆t
∑
i,j∈Am

psij, (2.15)

where Am is the set of event-pairs satisfying m∆t 6 |ti− tj| < (m+ 1)∆t, φm is the

height of m-th bin where 0 6 m 6M − 1, and |Am| is the size of Am. Eq. 2.14 and

2.15 are derived from ∂
∂µ
EB[log p(D,B)] = 0 and ∂

∂φm
EB[log p(D,B)] = 0.



2.1. Hawkes Process 14

Wiener-Hopf Method Based on the literature [11], the following statements

may be made:

(1) A 1-variate Hawkes process with stationary increments is uniquely defined by

its first-order statistics (i.e. the first-order cumulant Eq. 2.4) and its second-order

statistics (given by either its second-order cumulant Eq. 2.6 or equivalently the

conditional expectation Eq. 2.7).

(2) The triggering kernel φ(τ) and the conditional expectation g(τ) (Eq. 2.7) satisfy

the following Wiener-Hopf equation:

g(τ) = φ(τ) + φ(τ) ∗ g(τ), ∀τ > 0 (2.16)

where ∗ stands for convolution. The detailed proof can be found elsewhere [11].

In fact, statement (1) is a direct consequence of Eq. 2.16 which proves that

the second-order statistics g(τ) fully characterize the triggering kernel φ(τ), and of

Eq. 2.4 which can express µ as a function of φ(τ) and the first-order cumulant Λ.

Quadratic Contrast Function Method Other works [12] and [13] attempt to

minimize a quadratic contrast (loss) function with a grid based triggering kernel.

The former [12] may be elaborated as follows. Given a 1-variate Hawkes process N(t),

the conditional intensity function is once again given by Eq. 1.1 where the triggering

kernel φ(τ) belongs to a class of non-negative integrable functions. The goal is the

nonparametric estimation of the triggering kernel of Hawkes process, which means

that no parametric form is assumed for the triggering kernel e.g. exponential decay

or power law decay. The real line is divided into intervals of width h > 0 and the

following is defined:

Y h
t = N(th)− N((t− 1)h) (2.17)

with t ∈ Z. For every fixed h, Y h
t represents the number of jumps in time intervals

((t − 1)h, th]. Thus, the random variable Y h
t is approximately binary with small

enough h. If the triggering kernel φ(τ) is continuous and h is small enough, φ(τ)
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can be approximated by a piecewise constant function leading to

E(Y h
t |Hh(t−1)) ≈ hµ+ h

∞∑
u=1

φ(uh)Y h
t−u, (2.18)

where Hh(t−1) is the history before (t− 1)h. This naturally suggests a least square

estimator for the triggering kernel. Assume there are k bins for φ(τ) and zero

otherwise, therefore defining a contrast (loss) function

T/h∑
t=k+1

‖Y h
t − µh− φh,kY

h,k
t ‖2

2, (2.19)

where φh,k = (hφ(h), . . . , hφ(kh))T and Yh,k
t = (Y h

t−1, . . . , Y
h
t−k). Also define

γh,k = cov(Y h
t ,Y

h,k
t ) = (cov(Y h

t , Y
h
t−u))u=1,...,k,

Γh,k = cov(Yh,k
t ,Yh,k

t ) = (cov(Y h
t−u, Y

h
t−v))u,v=1,...,k.

(2.20)

It is straightforward to prove that the above loss function is minimized by

φ̂h,k = γ̂Th,kΓ̂
−1
h,k, µ̂h = Ȳ h − φ̂h,kȲh,k (2.21)

with γ̂h,k = 1
T/h−k

∑T/h
t=k+1(Y h

t − Ȳ h)(Yh,k
t − Ȳh,k) being the empirical covariance of

Y h
t and Yh,k

t and Γ̂h,k, Ȳ
h, Ȳh,k are defined similarly.

Clearly the quadratic contrast function method is related to the Wiener-Hopf

equation method, based on the fact that the triggering kernels are both determined

by the second-order statistics (covariance or conditional expectation) and the base-

line intensities are both determined by the triggering kernel and first-order statistics

(mean rate). In fact, the φ estimator in Eq. 2.21 is just equivalent to the Nystrom

discrete version [23] of the convolution equation (Eq. 2.16) and the µ estimator in

Eq. 2.21 is just equivalent to Eq. 2.4.
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2.2 Gaussian Process

A continuous stochastic process f(x) is a Gaussian process if and only if for every

finite set of indices x1, . . . , xk, fx1,...,xk = (f(x1), . . . , f(xk)) is a multivariate Gaussian

random variable. More formally, GP is specified by the mean function m(x) and

covariance kernel k(x, x′):

f(x) ∼ GP(m(x), k(x, x′)), (2.22)

where f(x) is a sample function drawn from GP. Without loss of generality, the

prior mean function can be assumed to be zero: m(x) = 0, and the only work left

is to define the covariance kernel k(x, x′). Unless explicitly stated, the covariance

kernel is the squared exponential kernel throughout the thesis:

k(x, x′) = θ0 exp

(
−θ1

2
‖x− x′‖2

)
, (2.23)

where θ0, θ1 are the hyperparameters.

For the GP regression problem [24], assume that the observations are subjected

to a normally distributed noise, so the likelihood is in a Gaussian form which is

conjugated to the GP prior. Given a set of observations ((x1, y1), . . . , (xN , yN)), the

posterior mean and variance are

m(x) = kTC−1
N y, σ2(x) = c− kTC−1

N k (2.24)

where k = (k(x1, x), . . . , k(xN , x)); c = k(x, x)+σ2
ε and CN is the matrix C(xn, xn′) =

k(xn, xn′) + σ2
ε δnn′ with σ2

ε being the noise variance of observations; δnn′ = 1 when

n = n′ and 0 otherwise; n, n′ ∈ N ; y = (y1, . . . , yN).

For the GP classification problem [24], the inference becomes more complicated

because the likelihood is non-Gaussian: a sigmoid transformation of function f

(binary classification) or a softmax transformation of f (multi-class classification).
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Consequently, there is no analytical expression for the posterior. Various approxi-

mate inference algorithms have been proposed, e.g. Laplace approximation or ex-

pectation propagation algorithm. More details can be found elsewhere [24].

2.3 EM Algorithm

The EM algorithm is used to find local maximum likelihood (posterior) parameters

of a statistical model in cases where the likelihood (posterior) cannot be maximized

directly. Typically these models include latent variables, parameters and observa-

tions. Usually the model can be formulated more simply by augmentation of latent

variables, e.g. the likelihood of a mixture model can be simpler by assuming that

each observed data belongs to a mixture component (latent variable).

Finding a maximum likelihood (posterior) solution typically requires the gradient

of the likelihood (posterior) w.r.t. all parameters and latent variables. However, this

is usually intractable in typical statistical models with latent variables because the

result is a set of interlocking equations in which the solution to the parameters

requires the values of the latent variables and vice versa. Instead, the EM algorithm

uses iterations to find maximum likelihood (posterior) estimates.

Given the observed data D, a set of unobserved latent variables Z and a vector

of parameters θ along with a likelihood (posterior) p(D,Z|θ), the EM algorithm

seeks to find the maximum of the marginal distribution p(D|θ) =
∫
p(D,Z|θ)dZ by

iteratively applying expectation (E) and maximization (M) steps:

θs+1 = argmax
θ

E
Z∼p(Z|θs)

[log p(D,Z|θ)] (2.25)

with s indicating iteration steps.
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2.4 Bayesian Inference

The two most popular Bayesian inference methods are MCMC [25] and variational

inference [26]. The former has the advantage of being asymptotically exact; the

latter has the advantage of maximizing an explicit objective and being faster in

most cases. In this section, the classical MCMC algorithms are discussed first,

including Metropolis-Hasting (MH) sampling [27] and Gibbs sampling [28]; secondly

the variational inference algorithms are described, including variational Gaussian

approximation [29] and mean-field variational inference [30].

2.4.1 Metropolis-Hasting Sampling

The MH algorithm is an MCMC method for obtaining a sequence of random sam-

ples from a probability distribution from which direct sampling is difficult. The

MH algorithm works by generating a sequence of samples in such a way that the

distribution of samples will closely approximate the desired distribution as more

and more samples are generated. These samples are generated recursively with the

distribution of the next sample being dependent only on the current sample (Markov

chain). Specifically, the algorithm proposes a candidate for the next sample based

on the current sample at each iteration. Then, with some probability, the candidate

is either accepted or rejected.

Mathematically, given a desired distribution p(x) and a proposal distribution

g(x′|xt), the MH algorithm consists of the following steps:

1. Set an initial sample x0 and set t = 0;

2. Randomly generate a candidate x′ from g(x′|xt);

3. Calculate the acceptance probability A = min
(

1, p(x
′)g(xt|x′)

p(xt)g(x′|xt)

)
;

4. Generate a uniform random variable u ∈ [0, 1]; accept the new sample and

set xt+1 = x′ if u ≤ A or reject the new sample and set xt+1 = xt if u > A;
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set t = t + 1 and go back to step 2 until the desired number of samples are

obtained.

2.4.2 Gibbs Sampling

The MH sampling algorithm above can only be applied to low dimensional distri-

butions since the acceptance rate will decrease exponentially with the number of

dimensions. For high dimensional distributions, Hamiltonian Monte Carlo [31], el-

liptical slice sampling [32] or Gibbs sampling [28] can be used. Here, only the Gibbs

sampling algorithm is discussed, with the alternatives available via references.

Gibbs sampling is an MCMC algorithm for obtaining a sequence of samples

which are approximately from a specified multivariate probability distribution when

direct sampling is difficult. This sequence can be used to approximate the joint

distribution. Gibbs sampling is applicable when the joint distribution is not known

explicitly or is difficult to sample from directly, but the conditional distribution of

each variable is known and is easier to sample from. The Gibbs sampling algorithm

generates a sample from the distribution of each variable in turn, conditional on

the current values of other variables. It can be shown that the sequence of samples

constitutes a Markov chain and the stationary distribution of that Markov chain is

just the target joint distribution.

Mathematically, the aim is to sample from a joint distribution p(x1, . . . , xN).

Denote the i-th sample by Xi = (xi1, . . . , x
i
N). The algorithm follows:

1. Set an initial sample Xi;

2. To sample xi+1
j , update it according to the distribution specified by

p
(
xi+1
j |xi+1

1 , . . . , xi+1
j−1, x

i
j+1, . . . , x

i
N

)
;

3. Repeat until the desired number of samples are obtained.
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2.4.3 Variational Gaussian Approximation

To provide an analytical approximation to the posterior, variational Bayes is an

alternative to MCMC methods (such as Gibbs sampling) for taking a fully Bayesian

approach to statistical inference over complex distributions which are difficult to

directly evaluate or sample from. In particular, variational Bayes provides a locally-

optimal exact analytical solution to an approximation of the posterior. For many

applications, variational Bayes produces solutions of comparable accuracy to Gibbs

sampling at greater speed. However, deriving the set of equations used to iteratively

update the parameters often requires a large amount of work compared with deriving

the comparable Gibbs sampling equations.

In variational inference, the posterior distribution over a set of unobserved vari-

ables Z = {Z1 . . . ZN} given some data X is approximated by a variational distri-

bution q(Z): p(Z | X) ≈ q(Z). The distribution q(Z) is restricted to belong to a

family of distributions of simpler form than p(Z | X) selected with the intention

of making q(Z) similar to the true posterior. The lack of similarity is measured in

terms of a dissimilarity function and hence inference is performed by selecting the

distribution q(Z) that minimizes the dissimilarity function.

The most common type of variational Bayes uses the Kullback-Leibler diver-

gence (KL-divergence) of p from q as the choice of dissimilarity function. The

KL-divergence between q(Z) and p(Z | X) can be written as

DKL(q ‖ p) =

∫
Z

q(Z)

[
log

q(Z)

p(Z,X)
+ log p(X)

]
, (2.26)

or equivalently expressed as

log p(X) = DKL(q ‖ p)−
∫

Z

q(Z) log
q(Z)

p(Z,X)
= DKL(q ‖ p) + L(q). (2.27)

As the log evidence log p(X) is fixed with respect to q, maximizing the final
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term L(q) minimizes the KL divergence of p from q. By appropriate choice of q,

L(q) becomes tractable to compute and to maximize. Hence both an analytical

approximation q for the posterior p(Z | X) and a lower bound L(q) for the evidence

log p(X) are obtained. The term L(q) is often called the evidence lower bound

(ELBO).

The variational Gaussian approximation is a parametric variational inference ap-

proach where the variational distribution q is assumed to be a multivariate Gaussian

distribution. The advantages of variational Gaussian approximation include the fol-

lowing:

(1) the correlations between variables are incorporated compared to the mean-field

method (see Sec. 2.4.4);

(2) generally speaking, due to the Gaussian form, the ELBO or KL-divergence is

easier to compute.

More formally, by restricting the variational distribution q to be a multivariate

Gaussian distribution with mean m and covariance Σ,

L(q) = −
∫

Z

q(Z) log
q(Z)

p(Z,X)
= Eq log p(Z,X)+

1

2
log(|Σ|)+

N

2
log(2π)+

N

2
(2.28)

where N is the dimension of Z. Hence, setting the derivatives of L(q) with respect

to the variational parameters m and Σ equal to zero leads to

∇mEq log p(Z,X) = 0, Σ−1 = −2∇ΣEq log p(Z,X). (2.29)

This requires the computation of N(N + 1)/2 +N variational parameters, which is

much larger than the number of parameters required for the mean-field method.

2.4.4 Mean Field Approximation

In contrast to the variational Gaussian approximation, the mean field variational

inference is a nonparametric approach where the variational distribution q(Z) is only
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assumed to factorize over some partition of the latent variables, e.g. Z is partitioned

into Z1 . . .ZM : q(Z) =
∏M

i=1 qi(Zi | X). It can be shown using the calculus of

variations that the optimal distribution q∗j for each of the factors minimizing the KL

divergence can be expressed as

ln q∗j (Zj | X) = EZi 6=j [log p(Z,X)] + constant. (2.30)

The constant in the above expression is the normalizing constant and is usually

reinstated by inspection because the rest of the expression can be recognized as

being a known type of distribution.

For each partition of variables, by simplifying the expression of the distribution

over the variables and examining the functional dependency of the distribution on

the variables in question, the family of the distribution can usually be determined.

The formula for the distribution parameters will be expressed in terms of expecta-

tions of functions of variables in other partitions. In most cases, the distributions

of the other variables will be from known families, and the formulas for the relevant

expectations can be looked up. However, the formulas depend on the parameters

of those distributions, which depend in turn on the expectations of other variables.

The result is that the formulas for the parameters of the distribution of each variable

can be expressed as a series of interlock equations. Usually, it is not possible to solve

this system of equations directly. However, as described above, the dependencies

suggest a simple iterative algorithm, which in most cases is guaranteed to converge.

2.5 Summary

In this section, the background knowledge about Hawkes process, Gaussian process,

EM algorithm and Bayesian inference is introduced, which is the basis of under-

standing subsequent chapters. In the next chapter, a frequentist nonparametric

inference method of Hawkes process will be discussed.



Chapter 3

A Refined MISD Algorithm for

Nonparametric Hawkes Process∗

In this chapter, a refined MISD algorithm is proposed. For the classical MISD

algorithm discussed in Sec. 2.1.3, the performance has a strong dependence on the

number of bins, which needs to be tuned by model selection method e.g. cross

validation. To ease the choice of number of bins, an innovative embedding of a

Gaussian process regression step into the EM iteration is proposed to obtain a

refined MISD algorithm that is less sensitive to the choice of number of bins.

3.1 Overview

In a real application, data is usually collected sequentially. The modelling of such

time series data to discover the underlying temporal dynamics is a challenging prob-

lem in this domain. To address it, different models have been proposed in the past

such as recurrent neural networks (RNN) [33] and temporal point process [34]. There

∗Portions of this chapter have been published: F. Zhou, Z. Li, X. Fan, Y. Wang, A. Sowmya, F.
Chen, A Refined MISD Algorithm Based on Gaussian Process Regression, Advances in Knowledge
Discovery and Data Mining, Springer International Publishing AG, part of Springer Nature 2018,
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10938, pp. 584596, 2018
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are many variants of the latter, such as homogeneous Poisson process [35], inhomo-

geneous Poisson process [36] and Hawkes process [3].

The MISD algorithm was proposed to perform nonparametric estimation of the

triggering kernel and baseline intensity [1]. Essentially MISD is a histogram density

estimator, and the triggering kernel obtained from MISD is a discrete function and

the number of bins used in the model has a vital impact on the learning results. It

can be seen from the experiments in this chapter that the learned triggering kernel

underfits when fewer bins are used, and overfits when more are used. To determine

the optimal number of bins, the log-likelihood logL({ti}|M) conditioned on bin

number M may be computed as M̂ by maximum likelihood estimation, or from

an unnormalized posterior distribution by multiplying the likelihood with a prior

distribution on M such as a Poisson distribution; it is assumed that all the bins are

equally wide. However, both these methods will lead to extra computations which

is undesirable. Instead, a refined MISD algorithm which does not depend on the

choice of number of bins is proposed in this chapter. A Gaussian process regression

is innovatively embedded into the iterations of the MISD algorithm, to produce a

refined algorithm which is less sensitive to the choice of number of bins, named GP-

MISD. In this new method, M can be set to a large number to use over-segmented

bins since it can prevent overfitting to some extent.

The remainder of this chapter is organized as follows: in Sec. 3.2, the new algo-

rithm GP-MISD is proposed. Synthetic and real data experiments and a detailed

discussion are provided in Sec. 3.3, the choice and sensitivity of hyperparameters

are discussed in Sec. 3.4 and Sec. 3.5 concludes this chapter.

3.2 Proposed Model

The basic MISD algorithm has already been described in Sec. 2.1.3. In this section,

the proposed GP-MISD algorithm is presented here. The key idea in GP-MISD is
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to embed a Gaussian process regression into the EM iterations, which makes use

of the rates learned in each iteration step to perform a regression and obtain a

smooth mean triggering kernel. This kernel is used in the next iteration step, and

the iterations proceed in this fashion.

After obtaining the observation points (φs1, · · · , φsM) in iteration step s in MISD

(Eq. 2.15), GP regression is used to evaluate the posterior mean functionm(x|φs1, · · · , φsM),

which will be used as the φ(τ) in the next iteration step. Specifically, the new algo-

rithm can be divided into three steps:

(1) E-step performs the update for the matrix P :

psij =
φ̄s(ti − tj)

µs +
∑i−1

j=1 φ̄
s(ti − tj)

psii =
µs

µs +
∑i−1

j=1 φ̄
s(ti − tj)

.

(3.1)

(2) M-step performs the update for the baseline intensity and triggering kernel, using

Eq. 2.14 and Eq. 2.15.

(3) GP-step performs the update for the Gaussian process posterior mean:

φ̄s+1(τ) = kTC−1
M φ

s+1, (3.2)

where CM is the matrix with entries C(τn, τm) = k(τn, τm)+σ2
ε δnm, {τi}Mi=1 are the x-

values of M triggering kernel points, k(·) is the covariance kernel function, and σ2
ε is

the variance of the noise in observation points, k = (k(τ1, τ), k(τ2, τ), · · · , k(τM , τ)),

φs+1 = (φs+1
1 , φs+1

2 , · · · , φs+1
M ) are the y-values of M triggering kernel points on step

s+ 1. The final triggering kernel obtained by this algorithm is φ̄(τ), and Eq. 3.2 is

derived from the standard Gaussian process regression (see Sec. 2.2).
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3.3 Experiments

In this section, the synthetic data experiments are presented in Sec. 3.3.1 and real

data experiments in Sec. 3.3.2. For evaluation metric, the training error is defined

as negative log-likelihood of the training data. Then the model learned is applied

to the test data to obtain the test error, which is defined as negative log-likelihood

of the test data. For GP hyperparameters, setting the values of θ0 and θ1 is also a

key step in all GP-based methods. The hyperparameters used to determine the GP

kernel implicitly encode information on the flexibility of the GP. The optimization of

hyperparameters in GP has been proven to be a non-convex problem [37], which may

introduce some difficulty in learning the hyperparameter values. In the experiments,

grid search was used to find the optimal hyperparameter values. It was also found

that setting the hyperparameter values in a reasonable range does not severely affect

the final result.

3.3.1 Synthetic Data

For simplicity, it is assumed that the true triggering kernel is an exponential decay

function: µ = 1, φ(τ) = 1 ·exp(−2τ). Two sets of synthetic data are generated from

the Hawkes process specified above using the thinning algorithm [38]. For each set,

the observation duration T is set to 400, resulting in generation of about 850 events.

The first set is used as the training dataset, and the second one as the test dataset.

For the inference, it is assumed that the baseline intensity is constant and the

form of the triggering kernel is unknown, so the goal is to infer µ and φ(τ). The

MISD algorithm is trained the training dataset for different numbers of bins ranging

from 3 to 100. φ(τ) is assumed to be zero outside the support [0, 3] and the number

of iterations is set to 100. The same experimental protocol is also applied to the

GP-MISD algorithm. The hyperparameters θ0, θ1, σ2
ε are chosen to be 2.3, 2.3 and

0.01 in the GP step based on grid search.
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Figure 3.1: The training errors (left) and test errors (right) of MISD and GP-MISD.

Figure 3.2: The fitting results of φ(τ) from MISD and GP-MISD based on 10 bins
(left), 40 bins (middle) and 100 bins (right).

The training error and test error for both algorithms appear in Fig. 3.1. It can

be seen that as the number of bins increases from 3 to 100, the training error of

MISD decreases monotonically, while the test error increases after #bin=8. For

GP-MISD, the training error does not decrease rapidly after #bin=8, while the test

error is almost constant after #bin=8. These results show that GP-MISD is less

sensitive to the choice of number of bins compared to MISD, where the latter is

likely to be overfitting when too many bins are used. More importantly, from the

test error it is clearly the case that GP-MISD is always superior to MISD no matter

how many bins are used, and this can also be found from the fitting results of φ(τ)

in Fig. 3.2 which is based on #bin=10, 40 and 100. It is clear that the estimation

result of φ(τ) from GP-MISD matches the ground truth. More importantly, the

result is more stable with respect to the number of bins, showing the superiority of

GP-MISD on the synthetic datasets.
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3.3.2 Real Data

The performances of GP-MISD and MISD are evaluated on real world datasets from

two different domains. These datasets are now described.

1. Motor Vehicle Collisions in New York City

The motor vehicle collision dataset [39] was made available by the New York

City Police Department (NYPD). It contains about 1.05 million vehicle col-

lision records in New York City from July, 2012 to September, 2017. The

dataset includes the collision date, time, borough, location, contributing factor

and other relevant information. For the proposed model, the most valuable

features are the date and time. To avoid the oversize dataset, the collision

records in Manhattan, Queens and Bronx caused by ’Alcohol Involvement’

were filtered out. For each borough, half of the records are used as the training

dataset and the other half as the test dataset. In the dataset, some collisions

occur at the same time as the resolution is at minute level, which violates the

definition of the temporal point process. To avoid this, a small time interval

is added to all the simultaneous records so as to separate them. The hyper-

parameters θ0, θ1, σ2
ε are set to 3.5, 3.5, 0.01 for Manhattan, 4.5, 4.5, 0.01 for

Queens and 3.9, 3.9, 0.01 for Bronx based on grid search. Both algorithms

are run for 100 iterations. The support of φ(τ) is set to 3.0 so as to be long

enough for the triggering effect and the time unit is 1.16 day.

2. NYPD Complaint Data 2017

This dataset [40] includes all valid felony, misdemeanour and violation crimes

reported to the NYPD for all complete quarters at the time of data collection

in 2017. It includes 228,000 complaint records in New York City. The columns

are complaint number, date, time, offense description, borough and other rele-

vant information. To avoid the oversize dataset, the complaints in Manhattan,

Queens and Brooklyn with the offense description of “THEFT-FRAUD” were
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filtered out. Again, for each borough, half the records are used as the training

dataset and the others as the test dataset. A small time interval is added to

separate all simultaneously occurring events. The hyperparameters θ0, θ1, σ2
ε

are set to 6.45, 6.45, 0.01 for all boroughs based on grid search. Both algo-

rithms are run for 100 iterations. The support of φ(τ) is set to 3.0 so as to be

long enough for the triggering effect and the time unit is 11.6 days.

For Motor Vehicle Collisions in New York City, the learned µ, φ(τ) and the

test errors of both algorithms for #bin=20, 50, 80, 100 are shown in Table 3.1 and

Fig. 3.3. For NYPD Complaint Data 2017, the learned µ, φ(τ) and the test errors

of both algorithms for #bin=30, 50, 75, 100 are shown in Table 3.2 and Fig. 3.4.

Table 3.1: Motor Vehicle Collisions in New York City: the learned baseline intensity
µ from MISD and GP-MISD based on #bin=20, 50, 80, 100.

Table 3.2: NYPD Complaint Data 2017: the learned baseline intensity µ from MISD
and GP-MISD based on #bin=30, 50, 75, 100.

From both sets of results, clearly φ(τ) of GP-MISD is smoother and more stable

than that of MISD and the test error of GP-MISD is always lower than MISD,

which is consistent with the synthetic dataset result. GP-MISD effectively avoids

the overfitting phenomenon and the algorithm is less sensitive to the choice of #bin.
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For vehicle collision, the triggering patterns in different boroughs are similar and

the triggering effect lasts for about 4.5 days. From the learned triggering kernel in

Fig. 3.3, a periodic oscillation is observed. This corresponds to the periodic influence

of the initial accident, e.g. a car crash will cause instant traffic jam in the beginning,

then the traffic jam on one road will cause further traffic jams on all the connected

roads, and the further traffic jams will cause further car crashes in a similar fashion,

but overall the influence will become smaller over time. For crime complaints, the

triggering patterns in different boroughs are similar and the triggering effect lasts for

almost one month, but is significant in the first 10 days. From the learned triggering

kernel in Fig. 3.4, a periodic oscillation is not obvious but a peak rate is observed

in the first 10 days. This corresponds to the nature of the crime: a criminal case

only has a large influence on subsequent cases in an ensuing short period, due to the

shortly following police investigation. Moreover, the trend of the triggering kernel

is quite dynamic, especially in the short period after the source event has occurred,

e.g., within about 0.5 day after initial collision in Fig. 3.3, or about 5 days after

the initial complaint in Fig. 3.4. To capture the trend, the #bin must be set to

be large enough so that the resolution is sufficient, however, too large a #bin will

cause overfitting, such as spikes in the triggering kernel. This is the advantage of

GP-MISD, which represents the triggering kernel with continuity and capturing any

dynamic trends without overfitting.

3.4 Discussion

In this section, the choice of and sensitivity of hyperparameters is discussed. In

the refined MISD algorithm, the hyperparameters include θ0, θ1 and σ2
ε , which are

common hyperparameters for GP. Generally speaking, just as in the case of the

normal GP, θ0 and θ1 have significant influence on the estimation results, but σ2
ε

does not have such a significant effect, because it is a noise variance parameter used

to improve the numerical stability and can be set to a small positive value (e.g.
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0.01). As stated in the experiments, θ0 and θ1 are tuned based on grid search to

find the optimal value, and σ2
ε is set to 0.01.

The advantages of the proposed GP-MISD are already illustrated above: it can

smooth the overfitting result caused by the choice of number of bins. Correspond-

ingly, due to the incorporation of GP, a disadvantage is that the hyperparameters

have to be chosen carefully. In this work, the hyperparameters are chosen based on

grid search, however other more efficient methods can also be applied e.g. gradient

based methods.

3.5 Summary

In this chapter, a refined MISD algorithm for Hawkes process was proposed, namely

the GP-MISD algorithm which can effectively avoid overfitting when more bins are

used. The key contribution of embedding a Gaussian process regression into EM

iterations actually can be applied to many other algorithms based on bins, resulting

in a smoother effect that avoids overfitting. GP-MISD inherits the advantages of

MISD of estimating the baseline intensity and triggering kernel without any prior

knowledge of the functional form. Experiments were performed on both synthetic

and real datasets demonstrating that GP-MISD is less sensitive to the choice of

the number of bins and produced consistently superior results to MISD. Although

the GP-MISD algorithm is not in itself very complex, it constitutes an important

component of the nonstationary Hawkes process presented in Chapter 6.
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Figure 3.3: Motor Vehicle Collisions in New York City: rows 1-4 show the learned
φ(τ) from MISD and GP-MISD based on #bin=20, 50, 80, 100 respectively (upper,
time unit is 1.16 day), and row 5 shows test errors of both algorithms for #bin=20,
50, 80, 100 (lower). Columns 1-3 stand for Manhattan, Queens, Bronx respectively.
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Figure 3.4: NYPD Complaint Data 2017: rows 1-4 show the learned φ(τ) from
MISD and GP-MISD based on #bin=30, 50, 75, 100 respectively (upper, time unit
is 11.6 days), and row 5 shows test errors of both algorithms for #bin=30, 50, 75,
100 (lower). Columns 1-3 stand for Manhattan, Queens, Brooklyn respectively.



Chapter 4

Nonparametric Hawkes Process

Modulated by Quadratic Gaussian

Process∗

The GP-MISD algorithm in Chapter 3 provides a frequentist solution to the non-

parametric Hawkes process, with the GP regression step used only as a smoother.

In this chapter, another type of nonparametric method for the Hawkes process is

introduced, namely the Bayesian nonparametric. More specifically, the Gaussian

Process modulated Hawkes process is proposed, wherein a GP prior is incorporated

for the baseline intensity and triggering kernel.

To guarantee the non-negativity of intensity, trajectories drawn from a GP prior

need to be squashed by a link function. Depending on the link function used,

two different Bayesian nonparametric Hawkes process models are proposed: (1)

quadratic GP Hawkes process where the link function is a square transformation,

and (2) sigmoid GP Hawkes process where the link function is a scaled sigmoid

function.

∗Portions of this chapter have been deposited in arXiv: F. Zhou, Z. Li, X. Fan, Y. Wang,
A. Sowmya, F. Chen, Efficient EM-Variational Inference for Hawkes Process, arXiv preprint
arXiv:1905.12251. 29 May 2019.
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In Sec. 4.1, the issue of Bayesian nonparametric Hawkes process is introduced.

The quadratic GP Hawkes process model is described in Sec. 4.2. In Sec. 4.3,

an EM based variational Gaussian approximation inference method is proposed

to approximate the true posterior with a Gaussian distribution. Some accelerating

methods are proposed in Sec. 4.4. Synthetic and real data experiments are discussed

in Sec. 4.5. The hyperparameter settings are discussed on Sec. 4.6, with the summary

in Sec. 4.7. In Chapter 5, the sigmoid GP Hawkes process will be presented.

4.1 Overview

The Hawkes process has been used as an intensity estimator in a wide range of do-

mains, including social networks [41], criminology [42] and financial engineering [43].

One of the key challenges for the Hawkes process is to select the function for base-

line intensity and triggering kernel. The vanilla Hawkes process assumes a constant

value for the baseline intensity and parametric function for the triggering kernel e.g.

the exponential decay or power-law decay function. The parametric assumption

introduces convenience to inference, but is inconsistent with many real applications,

e.g. the baseline intensity of civilian deaths due to insurgent activity is chang-

ing over time [8] and the triggering kernel of vehicle collision is a periodic decay

function [9]. To avoid the necessity for model selection and to model the baseline

intensity and triggering kernel with continuous change, a Bayesian nonparametric

model for Hawkes process is proposed in this chapter. Any formulated assumption

for both baseline intensity and triggering kernel is avoided. The Bayesian priors on

both components are some transformation of a GP that guarantees the nonnegativ-

ity constraint.

In a näıve Bayesian framework, given the observation D, the posterior of µ(t)
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and φ(τ) is

p(µ(t), φ(τ)|D) =
p(D|µ(t) = ζ(f), φ(τ) = ζ(g))GP(f)GP(g)∫∫

p(D|ζ(f), ζ(g))GP(f)GP(g)dfdg
, (4.1)

where ζ(·) is the link function to guarantee the nonnegativity constraint, and f

and g are two functions drawn from the corresponding GP priors. In practice,

inference of the posterior is non-trivial because of the doubly-intractable problem

[16] caused by intractable integrals in the numerator and denominator. This problem

is circumvented tactfully in the quadratic GP Hawkes process model.

4.2 Quadratic GP Hawkes Process

To obtain a nonparametric model, a quadratic GP Hawkes process (QGPHP) model

is proposed, whose baseline intensity and triggering kernel are the quadratic trans-

formation of random trajectories drawn from GP priors to guarantee non-negativity:

p(µ(t), φ(τ)|D) =
p(D|µ(t) = f 2(t), φ(τ) = g2(τ))GP(f)GP(g)∫∫

p(D|f 2(t), g2(τ)))GP(f)GP(g)dfdg
, (4.2)

where f and g are two functions drawn from the corresponding GP prior. The

quadratic link function [17, 44] is used because the inference can be performed in

closed form and it retains the connection between the data and the variational

uncertainty.

However, the inference is challenging due to two reasons:

1. The baseline intensity is coupled with the triggering kernel in the likelihood of

the Hawkes process, which drastically increases the complexity of performing

inference. To address this issue, the branching structure is augmented to

decouple them. The branching structure is a latent variable and estimated via

an EM algorithm.
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2. Although variational Gaussian approximation has been used for the Poisson

process [17], the inference is performed by high dimensional numerical opti-

mization which is time-consuming.

To circumvent these two problems, it is propose to embed a variational Gaussian ap-

proximation into the EM framework, provide some dimensionality reduction meth-

ods and derive a closed-form matrix derivative to speed up the inference. Specifically,

the following contributions are made by this work:

1. The baseline intensity and triggering kernel are both modelled as nonpara-

metric functions modulated by quadratic transformation of GP.

2. The latent branching structure of the Hawkes process is augmented to decou-

ple the baseline intensity and triggering kernel in the likelihood.

3. As a result, the variational Gaussian approximation is embedded into an EM

framework. The complexity of the EM-variational (EMV) algorithm scales linearly

with number of observations.

4. Sparse GP approximation is utilized to derive a closed-form matrix derivative

of ELBO to further accelerate EMV to be efficient.

4.3 Inference

In the inference section, the sparse GP approximation is first introduced to accelerate

the inference in Sec. 4.3.1. The branching structure is augmented to decouple

baseline intensity part and triggering kernel part in the likelihood in Sec. 4.3.2.

The variational Gaussian approximation is proposed for both parts in Sec. 4.3.3.

Combining the branching structure and variational Gaussian approximation, the

EM-variational algorithm is obtained in Sec. 4.3.4.
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4.3.1 Sparse GP Approximation

To improve inference efficiency and avoid the infinite dimensional issue, the sparse

GP approximation [45] is used to introduce some inducing points whose definition

can be found in [45]. f and g are dependent on their corresponding inducing points

Zf = {zmf }
Mf

m=1 and Zg = {zmg }
Mg

m=1; the function values of f and g at these inducing

points are uf and ug which have stationary Gaussian distributions uf ∼ N (0,Kzf zf )

and ug ∼ N (0,Kzgzg) respectively. Given samples uf and ug, f and g are assumed

to be f |uf ∼ GP(vf (t),Σf (t, t
′)) and g|ug ∼ GP(vg(τ),Σg(τ, τ

′)) with mean and

covariance:

vf (t) = ktzfK
−1
zf zf

uf ,Σf (t, t
′) = Ktt′ − ktzfK

−1
zf zf

kzf t′

vg(τ) = kτzgK
−1
zgzgug,Σg(τ, τ

′) = Kττ ′ − kτzgK
−1
zgzgkzgτ ′

(4.3)

with ktzf and kτzg being the kernel vectors w.r.t. observations and inducing points

while Kzf zf , Kzgzg , Ktt′ and Kττ ′ are w.r.t. inducing points or observations only.

Therefore, the joint distribution is

p(D, f, uf , g, ug) = p(D|µ(t) = f 2, φ(τ) = g2)p(f |uf )p(g|ug)p(uf )p(ug). (4.4)

4.3.2 Augmentation of Branching Structure

For variational inference, the ELBO needs to be obtained, which means f , uf , g

and ug need to be integrated out in Eq. 4.4. However, performing this procedure

directly is difficult because µ(t) is coupled with φ(τ) in the likelihood. To facilitate

inference, the branching structure of Hawkes process is introduced to decouple µ(t)
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and φ(τ). The branching structure B was already introduced in Sec 2.1.1:

bii =

1 if event i is a background event

0 otherwise

bij =

1 if event i is caused by event j

0 otherwise

After introducing the branching structure, the joint likelihood is obtained (Eq. 2.3).

Taking expected value of the log joint likelihood w.r.t. the branching structure, a

lower-bound of the log-likelihood is obtained:

Q(µ(t), φ(τ)|µ(s)(t), φ(s)(τ))

= EB [log p(D,B|µ(t), φ(τ))]

=

[
N∑
i=1

pii log(µ(ti))

]
−
∫ T

0

µ(t)dt︸ ︷︷ ︸
µ(t) part

+

N∑
i=2

[
i−1∑
j=1

pij log (φ(ti − tj))

]
−

N∑
i=1

∫ ti+Tφ

ti

φ(t− ti)dt︸ ︷︷ ︸
φ(τ) part

, log p̃(D|µ(t),Pii) + log p̃(D|φ(τ),Pij),

(4.5)

where superscript s indicates the previous iteration; p̃ means an unnormalized den-

sity; Tφ is the support of triggering kernel; the lower-bound is decoupled to two

independent parts: µ(t) part and φ(τ) part; pij = E(bij) can be understood as the

probability that the i-th event is affected by a previous event j and pii is the prob-

ability that the i-th event is triggered by the baseline intensity. Specifically, it is

defined as

pij =
φ(s)(τij)

µ(s)(ti) +
∑i−1

j=1 φ
(s)(τij)

,

pii =
µ(s)(ti)

µ(s)(ti) +
∑i−1

j=1 φ
(s)(τij)

.

(4.6)
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Proof of Lower-bound The lower-bound Q(µ(t), φ(τ)|µ(s)(t), φ(s)(τ)) in Eq. 4.5

is derived as follows. Based on Jensen’s inequality,

log p(D|µ(t), φ(τ)) =
N∑
i=1

log

(
µ(ti) +

i−1∑
j=1

φ(ti − tj)

)
−
∫ T

0

(
µ(t) +

∑
ti<t

φ(t− ti)

)
dt

≥
N∑
i=1

(
pii log

µ(ti)

pii
+

i−1∑
j=1

pij log
φ(ti − tj)

pij

)
−
∫ T

0

µ(t)dt−
N∑
i=1

∫ ti+Tφ

ti

φ(t− ti)dt

=
N∑
i=1

pii log µ(ti)−
∫ T

0

µ(t)dt+
N∑
i=2

i−1∑
j=1

pij log φ(ti − tj)−
N∑
i=1

∫ ti+Tφ

ti

φ(t− ti)dt+ C

(4.7)

where C is a constant.

4.3.3 Variational Gaussian Approximation

Due to the decoupling of µ(t) and φ(τ), the inference can be performed for two

components independently.

4.3.3.1 Baseline Intensity Part

Consider the µ(t) part: log p̃(D|µ(t) = f 2,Pii). Pii means the diagonal entries

of P = E(B) and Pij means the others off diagonal. The inducing points uf are

integrated out using a variational distribution q(uf ) = N (uf |mf ,Sf ) where Sf is

positive-semidefinite and symmetric. Jensen’s inequality is used to obtain the ELBO
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of µ(t) part:

log p̃(D|Pii)

= log

[∫∫
p̃(D|f,Pii)p(f |uf )p(uf )

q(uf )

q(uf )
dufdf

]
≥
∫∫

p(f |uf )q(uf )duf log p̃(D|f,Pii)df +

∫∫
p(f |uf )q(uf )df log

[
p(uf )

q(uf )

]
duf

= Eq(f) [log p̃(D|f,Pii)]−KL (q(uf )||p(uf ))

, ELBOµ,

(4.8)

where

q(f) =

∫
p(f |uf )q(uf )duf = GP(f |ṽf (t), Σ̃f (t, t

′)) (4.9)

with ṽf (t) = ktzfK
−1
zf zf

mf and Σ̃f (t, t
′) = Ktt′−ktzfK

−1
zf zf

kzf t′+ktzfK
−1
zf zf

SfK
−1
zf zf

kzf t′ .

The KL (q(uf )||p(uf )) term has an analytical solution due to the fact that two el-

ements are Gaussian distributions. The expectation of log-likelihood over q(f) can

be written as

Eq(f) [log p̃(D|f,Pii)]

=
N∑
i=1

piiEq(f)

[
log f 2(ti)

]
−
∫ T

0

{
E2
q(f)[f(t)] + Varq(f)[f(t)]

}
dt,

(4.10)

where E(A2) = E2(A) + Var(A). Eq. 4.10 has an analytical solution which is shown

as follows.

Analytical Solution of ELBO The KL (q(uf )||p(uf )) can be written as

KL (q(uf )||p(uf )) =
1

2

[
Tr(K−1

zf zf
Sf ) + log

|Kzf zf |
|Sf |

−Mf + mT
f K−1

zf zf
mf

]
, (4.11)

where Tr(·) means trace, | · | means determinant and Mf is the dimensionality of

uf .
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The last two terms in Eq. 4.10 have analytical solutions [17]:

∫ T

0

E2
q(f)[f(t)]dt = mT

f K−1
zf zf

ΨfK
−1
zf zf

mf , (4.12)

∫ T

0

Varq(f)[f(t)]dt = θf0T − Tr(K−1
zf zf

Ψf ) + Tr(K−1
zf zf

SfK
−1
zf zf

Ψf ), (4.13)

Where Ψf (zf , z
′
f ) =

∫ T
0
k(zf , t)k(t, z′f )dt. For the squared exponential kernel, Ψf

can be written as [17]:

Ψf (zf , z
′
f )

= −(θf0 )2

2

√
π

θf1
exp

(
−
θf1 (zf − z′f )2

4

)[
erf

(√
θf1 (z̄f − T )

)
− erf

(√
θf1 z̄f

)]
,

(4.14)

where erf(·) is Gauss error function and z̄f = (zf + z′f )/2.

The first term in Eq. 4.10 also has an analytical solution [17]:

Eq(f)

[
log f 2(ti)

]
=

∫ ∞
−∞

log f 2(ti)N (f(ti)|ṽf (ti), σ̃2
f (ti))df(ti)

= −G̃

(
−
ṽ2
f (ti)

2σ̃2
f (ti)

)
+ log

(
σ̃2
f (ti)

2

)
− CEM ,

(4.15)

where σ̃2
f (ti) is the diagonal entry of Σ̃f (t, t

′) in Eq. 4.9 at ti, CEM is the Euler-

Mascheroni constant 0.57721566 and G̃(z) is a special case of the partial derivative

of the confluent hyper-geometric function 1F1(a, b, z) [17]:

G̃(z) = 1F1
(1,0,0)(0, 0.5, z). (4.16)

It is worth noting that G̃(z) does not need to be computed for inference. Actually

it is sufficient to know that G̃(0) = 0 because m∗f = 0 (see Sec. 4.4).
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4.3.3.2 Triggering Kernel Part

For the φ(τ) part: log p̃(D|φ(τ) = g2,Pij). Similarly, the inducing points ug are

integrated out using q(ug) = N (ug|mg,Sg) where Sg is positive-semidefinite and

symmetric. The ELBO of φ(τ) part is

log p̃(D|Pij) = log

[∫∫
p̃(D|g,Pij)p(g|ug)p(ug)

q(ug)

q(ug)
dugdg

]
≥ Eq(g) [log p̃(D|g,Pij)]−KL (q(ug)||p(ug))

, ELBOφ,

(4.17)

where q(g) is Eq. 4.9 with notation f and t replaced by g and τ , respectively. The

expectation of log-likelihood over q(g) can be written as

Eq(g) [log p̃(D|g,Pij)]

=
N∑
i=2

i−1∑
j=1

pijEq(g)
[
log g2(τij)

]
−

N∑
i=1

∫ Tφ

0

{
E2
q(g)[g(τ)] + Varq(g)[g(τ)]

}
dτ.

(4.18)

Eq. 4.18 can be solved analytically using the same method as µ(t) part.

4.3.4 EM-Variational Algorithm

The motivation for augmenting the branching structure should now be clear. By

doing so, a surrogate function (lower-bound) is obtained that decouples µ(t) and

φ(τ) to two independent components (E step). For each component, variational

Gaussian approximation is utilized to derive an ELBO which should be maximized,

thus obtaining an optimal variational distribution (M step).

Throughout this work, the squared exponential kernel k(x, x′) = θ0 exp
(
− θ1

2
‖x− x′‖2

)
is used as the GP covariance kernel. The hyperparameters θ0 and θ1 can be opti-

mized by performing maximization of ELBO over {θ0, θ1} using numerical packages.

Normally, {θ0, θ1} are updated every 20 iterations. Apart from {θ0, θ1}, the hyper-
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parameters left are the number and location of inducing points. Theoretically, the

number M and location Z of inducing points affect the computation complexity and

the estimation quality of µ(t) and φ(τ). If M is too large, the inducing points kernel

matrix Kzz will be a large matrix which leads to high complexity. If M is too small,

the inducing points cannot capture the dynamics of µ(t) or φ(τ).

For fast inference, it is assumed that the inducing points are uniformly located

in the domain. Another advantage of uniform location is that the kernel matrix Kzz

has Toeplitz structure which means that the matrix inversion can be implemented

in O(M log2M) [46] instead of O(M3) in a näıve implementation.

The number of inducing points depends on the application. If µ(t) or φ(τ) is a

volatile function, more points are needed to capture the dynamics. In experiments,

preliminary runs are performed to gradually increase the number of inducing points

and stopped when the resulting µ(t) or φ(τ) is not improved much any more. The

pseudo code of näıve EMV is shown in Alg. 4.1.

Algorithm 4.1: Näıve EMV algorithm for QGPHP

Result: µ(t), φ(τ)
Initialize hyperparameters and P ;
for do

Update P by Eq. 4.6;
Update m∗f , S∗f , m∗g and S∗g by m∗f ,S

∗
f = argmaxmf ,Sf

(ELBOµ) and

m∗g,S
∗
g = argmaxmg ,Sg (ELBOφ);

Update ṽ∗f , Σ̃∗f , ṽ
∗
g and Σ̃∗g by Eq. 4.9 with m∗f , S∗f , m∗g and S∗g;

Update µ(t) and φ(τ) by µ(t) = (ṽ∗f )
2 + σ̃2∗

f , φ(τ) = (ṽ∗g)
2 + σ̃2∗

g where σ̃2∗
f

and σ̃2∗
g are diagonal entries of Σ̃∗f and Σ̃∗g;

Update hyperparameters.
end

4.4 Inference Speed Up

The näıve implementation of EMV algorithm in Alg. 4.1 is time-consuming. The

bottleneck is the update for m∗f , S∗f , m∗g and S∗g because numerical optimization
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has to be performed. Supposing the number of inducing points uf is Mf , the

dimensionality of the search space for optimization over mf and Sf is Mf+Mf (Mf+

1)/2. This is a large space even when Mf is small, and the case of ug is the same.

Two tricks were developed to speed up the algorithm:

(1) it is shown that m∗ does not need to be inferred, and

(2) the closed-form matrix derivative of ELBO is derived w.r.t. S, which means

that a local maximum S∗ can be obtained directly instead of performing numerical

optimization.

The transformation function is µ(t) = f 2, which is not a bijection. For every

µ(t), there are two positive-negative symmetric f(t)’s. The posterior of f can be

written as p(f |D,Pii) ∝ p(D|µ(t) = f 2,Pii)GP(f |uf )N (uf |0,Kzf zf ), where it is

straightforward to see that the likelihood is symmetric, i.e. the likelihood is the same

with f and −f . For the prior GP(f |uf )N (uf |0,Kzf zf ), uf can be integrated out

and the marginal distribution over f is still Gaussian with mean 0. Therefore, the

prior of f is also symmetric. Conclusively, the posterior p(f |D,Pii) is symmetric.

By variational Gaussian approximation, p(f |D,Pii) is approximated by a normal

distribution q(f) = GP(f |ṽf (t), Σ̃f (t, t
′)) where ṽf (t) = ktzfK

−1
zf zf

mf . Therefore,

m∗f = 0 definitely. This applies to the φ(τ) part as well to obtain m∗g = 0.

With the setting of m∗ = 0, the update for m∗f , S∗f , m∗g and S∗g becomes the

maximization of ELBO over S only. The closed-form matrix derivative of ELBO is

derived over S, which is shown in Sec. 4.4.1.
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4.4.1 Matrix Derivative of ELBO

Given mf = 0, ELBOµ can be written as

ELBOµ = −
(
θf0T − Tr(K−1

zf zf
Ψf ) + Tr(K−1

zf zf
SfK

−1
zf zf

Ψf )
)

+
N∑
i=1

pii

(
−G̃(0) + log(σ̃2

f (ti))− log 2− C
)

− 1

2

(
Tr(K−1

zf zf
Sf ) + log |Kzf zf | − log |Sf | −Mf

)
.

(4.19)

If Sf is symmetric, ∂ELBOµ/∂Sf can be written as

∂ELBOµ

∂Sf
= −(2K−1

zf zf
ΨfK

−1
zf zf
−K−1

zf zf
ΨfK

−1
zf zf
◦ I)

+
N∑
i=1

pii

(
2K−1

zf zf
kzf tiktizfK

−1
zf zf
−K−1

zf zf
kzf tiktizfK

−1
zf zf
◦ I

)
/σ̃2

f (ti)

− 1

2

(
2K−1

zf zf
−K−1

zf zf
◦ I− (2S−1

f − S−1
f ◦ I)

)
,

(4.20)

where I means the identity matrix, ◦ means Hadamard (elementwise) product and

σ̃2
f (ti) = θf0−ktizfK

−1
zf zf

kzf ti+ktizfK
−1
zf zf

SfK
−1
zf zf

kzf ti is the diagonal entry of Σ̃f (t, t
′)

in Eq. 4.9.

If Sf is diagonal, ∂ELBOµ/∂Sf can be further simplified as

∂ELBOµ

∂Sf
= −K−1

zf zf
ΨfK

−1
zf zf
◦ I

+
N∑
i=1

pii
K−1
zf zf

kzf tiktizfK
−1
zf zf
◦ I

σ̃2
f (ti)

− 1

2

(
K−1
zf zf
◦ I− S−1

f

)
.

(4.21)
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Similarly given mg = 0, ELBOφ can be written as

ELBOφ = −
N∑
i=1

(
θg0Tφ − Tr(K−1

zgzgΨg) + Tr(K−1
zgzgSgK

−1
zgzgΨg)

)
+

N∑
i=2

i−1∑
j=1

pij

(
−G̃(0) + log(σ̃2

g(τij))− log 2− C
)

− 1

2

(
Tr(K−1

zgzgSg) + log |Kzgzg | − log |Sg| −Mg

)
.

(4.22)

If Sg is symmetric, ∂ELBOφ/∂Sg can be written as

∂ELBOφ

∂Sg
= −

N∑
i=1

(2K−1
zgzgΨgK

−1
zgzg −K−1

zgzgΨgK
−1
zgzg ◦ I)

+
N∑
i=2

i−1∑
j=1

pij

(
2K−1

zgzgkzgτijkτijzgK
−1
zgzg −K−1

zgzgkzgτijkτijzgK
−1
zgzg ◦ I

)
/σ̃2

g(τij)

− 1

2

(
2K−1

zgzg −K−1
zgzg ◦ I− (2S−1

g − S−1
g ◦ I)

)
,

(4.23)

where σ̃2
g(τij) = θg0−kτijzgK

−1
zgzgkzgτij +kτijzgK

−1
zgzgSgK

−1
zgzgkzgτij is the diagonal entry

of Σ̃g(τ, τ
′).

If Sg is diagonal, ∂ELBOφ/∂Sg can be further simplified as

∂ELBOφ

∂Sg
= −

N∑
i=1

K−1
zgzgΨgK

−1
zgzg ◦ I

+
N∑
i=2

i−1∑
j=1

pij
K−1
zgzgkzgτijkτijzgK

−1
zgzg ◦ I

σ̃2
g(τij)

− 1

2

(
K−1
zgzg ◦ I− S−1

g

)
.

(4.24)

From the proof above, it is straightforward to see that if Sf is symmetric,

∂ELBOµ/∂Sf = 0 is a nonlinear system consisting of Mf (Mf + 1)/2 equations,

which is still inefficient due to too many simultaneous equations. To further acceler-

ate the inference, assume q(uf ) is an independent distribution (mean field approx-

imation [37]) which means Sf is diagonal. In the diagonal case, ∂ELBOµ/∂Sf = 0

is a nonlinear system consisting of Mf equations which can be solved faster. In ex-
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periments, it was found that this assumption does not make much difference when

µ(t) is not a volatile function. The discussion above applies to the φ(τ) part as well.

The accelerated EMV is provided in Alg. 4.2.

Algorithm 4.2: Accelerated EMV (time-changing µ(t))

Result: µ(t), φ(τ)
Initialize hyperparameters and P ;
for do

Update P by Eq. 4.6;
Update S∗f and S∗g by ∂ELBOµ/∂Sf = 0 and ∂ELBOφ/∂Sg = 0;

Update Σ̃∗f and Σ̃∗g by Eq. 4.9 with S∗f and S∗g;
Update µ(t) and φ(τ) by µ(t) = σ̃2∗

f and φ(τ) = σ̃2∗
g where σ̃2∗

f and σ̃2∗
g

are diagonal entries of Σ̃∗f and Σ̃∗g;
Update hyperparameters.

end

4.4.2 Constant Baseline Intensity

If µ(t) is constant µ, there is no need to compute the nonlinear system and variables

of µ(t) part, e.g. ktzf , Kzf zf , Ψf and ∂ELBOµ/∂Sf = 0. µ could be estimated by

µ =
∑N

i=1 pii/T in each EM iteration. Consequently, it is faster than the general

case. The pseudo code is provided in Alg.4.3.

Algorithm 4.3: Accelerated EMV (constant µ)

Result: µ, φ(τ)
Initialize hyperparameters and P ;
for do

Update P by Eq. 4.6;
Update S∗g by ∂ELBOφ/∂Sg = 0;

Update Σ̃∗g by Eq. 4.9 with S∗g;

Update µ and φ(τ) by µ =
∑N

i=1 pii/T and φ(τ) = σ̃2∗
g where σ̃2∗

g are

diagonal entries of Σ̃∗g;
Update hyperparameters.

end
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4.4.3 Complexity

An advantage of sparse GP approximation is that the complexity of matrix inversion

is fixed at O(M3
f + M3

g ) where Mf (or Mg) � N . This results in the complexity

scaling almost linearly with data size: O(NL) where L =
∫
Tφ

µ(t)
1−

∫
φ(τ)dτ

dt� N due

to the sparsity of the branching structure: previous points that are more than Tφ

units away from event i have no influence on event i (pij = 0).

In experiments on a normal desktop (CPU: i7-6700 with 8GB RAM), the näıve

implementation (Alg. 4.1) costs about two hours for N = 205, 6 inducing points

for both Zf and Zg and 100 EM iterations. The accelerated algorithms (Alg. 4.2

and 4.3) cost about 4 minutes and 2 minutes respectively in the same setting, which

drastically reduces the running time.

4.5 Experimental Results

The performance of EMV is evaluated on both synthetic and real data. Specifically,

the accelerated EMV Alg. 4.2 and 4.3 are compared with the following alternatives

wherever applicable:

• Gaussian-Cox (GC) process: a GP modulated inhomogeneous Poisson pro-

cess. The inference is performed by a published algorithm [15], which is only

applicable to real data.

• RKHS-Cox (RKHSC) process: an inhomogeneous Poisson process whose in-

tensity is estimated by a reproducing kernel Hilbert space formulation [44]. It is

applicable only to real data.

• Parametric Hawkes (PH) process: the vanilla Hawkes process (constant µ

and exponential triggering kernel α exp(−β(t− ti))). The inference is performed

by MLE.
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• Model Independent Stochastic Declustering (MISD): the MISD [8] is an

EM based nonparametric algorithm for Hawkes process, where µ is constant and

φ(·) is a histogram function. MISD-# is used (# is the number of bins) to indicate

the corresponding model.

• Wiener-Hopf (WH): it is another nonparametric algorithm for Hawkes process

where µ is constant and φ(·) is a continuous function. The inference is based on

the solution of a Wiener-Hopf equation [11].

The following metrics are used to evaluate the performance of various methods:

• LogLik : the log-likelihood of test data using the trained model. This is a metric

describing the model prediction ability. It is used to measure the performance on

synthetic and real data.

• EstErr : estimation error, defined as the integral of squared error between the

learned φ̂(τ) (µ̂(t)) and the ground truth. It is only used for synthetic data.

• Q-Q plot : quantile-quantile (Q-Q) plot, generated by transforming the real data

timestamps by the fitted model according to the time rescaling theorem [47]. Gen-

erally speaking, the Q-Q plot visualizes the goodness-of-fit for different models.

It is used to measure the performance on real data.

• PreAcc: Given an event sequence {t1, t2, ..., ti−1}, the aim is to predict the time

of next event ti. The ti has density P (ti = t) = λ(t) exp
(
−
∫ t
ti−1

λ(s)ds
)

. The

expectation of ti should be E[ti] =
∫∞
ti−1

tp(ti = t)dt. The integral in the equations

can be estimated by Monte Carlo method. Multiple timestamps are predicted in

a sequence: if the predicted t̂i is within ti ± ε where ti is the real timestamp and

ε is an error bound, then it is considered to be a correct prediction; otherwise it

is a wrong one. The percentage of correct predictions is defined as the prediction

accuracy. It is used to measure the performance on real data.
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4.5.1 Experimental Results on Synthetic Data

In synthetic data experiments, the performance of accelerated EMV inference Alg. 4.2

and 4.3 are compared with PH, MISD and WH (GC and RKHSC are excluded be-

cause they are Poisson process models and cannot provide µ and φ). Four cases are

considered:

1. µ = 1 and φ(τ) = 1 · exp(−2τ);

2. µ(t) =

1 (0 < t ≤ T/2)

2 (T/2 < t < T )
and φ(τ) = 1 · exp(−2τ);

3. µ = 1 and φ(τ) =

0.25 sin τ (0 < τ ≤ π)

0 (π < τ < Tφ)
;

4. µ(t) = sin
(

2π
T
· t
)
+1 (0 < t < T ) and φ(τ) = 0.3

(
sin(2π

3
· τ) + 1

)
·exp(−0.7τ) (0 <

τ < Tφ).

The thinning algorithm [38] is used to generate 100 sets of training data and 10

sets of test data with T = 100 in four cases. PH, MISD-10, MISD-20, WH and EMV

(Alg. 4.2 is used for cases 2 and 4, Alg. 4.3 for case 1 and 3) to perform inference

with Tφ = 6. The learned µ̂(t) and φ̂(τ) are shown in Fig. 4.1. The EstErr and

LogLik are shown in Tab. 4.1.

Case 1 is a common one with constant µ and exponential decay φ(τ) and 177

points were generated. For hyperparameters, the bandwidth of WH is set to 0.7

and there are 6 inducing points (Mg = 6) for EMV. The learned φ̂(τ)’s are shown

in Fig. 4.1. EstErr and LogLik are shown in Tab. 4.1. PH is the best in this case

because the parametric model assumption matches the ground truth.

Case 2 has a non-constant µ(t) which is a piecewise constant function, and 333

points were generated. The bandwidth of WH is set to 1 and there are 6 inducing

points on φ(τ) (Mg = 6) and 8 inducing points on µ(t) (Mf = 8) for EMV. The

learned results are shown in Fig. 4.1. EstErr and LogLik are shown in Tab. 4.1. In
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this case, EMV is the best for both µ(t) and φ(τ) because other alternatives assume

that µ(t) is a constant, which is inconsistent with the ground truth.

Case 3 has a half sinusoidal triggering kernel, and 181 points were generated. The

bandwidth of WH is set to 0.5 and there are 10 inducing points (Mg = 10) for EMV.

The learned φ̂(τ)’s are shown in Fig. 4.1. EstErr and LogLik are shown in Tab. 4.1

in which EMV is still the best for prediction ability although the estimation error

is large for µ. The result shows that EMV can learn the correct triggering kernel in

non-monotonically decreasing cases.

Case 4 is a general case with time-changing µ(t) and sinusoidal exponential decay

triggering kernel, and 212 points were generated. The bandwidth of WH is 0.9 and

there are 6 inducing points on φ(τ) (Mg = 6) and 8 inducing points on µ(t) (Mf = 8)

for EMV. Learned results are shown in Fig. 4.1. EstErr and LogLik are shown in

Tab. 4.1 and EMV is still the best.

Clearly, the EMV algorithm outperforms other alternatives in almost all cases

except Case 1. This is because only EMV algorithm is capable of estimating non-

parametric µ(t) and φ(τ) concurrently; the reason that PH is the best in Case 1 is

the parametric model assumption that matches the ground truth, which is a rare

situation in real applications.

4.5.2 Experimental Results on Real Data

The EMV algorithm is applied to two different real datasets and the performance

compared to the alternatives. Ground truth information is unavailable for the real

world data, so EstErr cannot be utilized to measure the performance. As a result,

the performance on real data is quantified by the metric of LogLik, Q-Q plot and

PreAcc.

Motor Vehicle Collisions in New York City [39]: In this dataset, weekday

records in nearly one month (Sep. 18th - Oct. 13th 2017) were filtered out. The
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.1: Experimental results of synthetic and real data. (a): The estimated φ̂(τ)
in case 1 (the estimated µ̂PH=0.973, µ̂MISD-10=0.698, µ̂MISD-20=0.620, µ̂WH=0.762,
µ̂EMV=0.623); (b) and (c): the estimated µ̂(t) and φ̂(τ) in case 2; (d): the esti-
mated φ̂(τ) in case 3 (the estimated µ̂PH=1.199, µ̂MISD-10=1.039, µ̂MISD-20=0.861,
µ̂WH=1.357, µ̂EMV=1.239); (e) and (f): the estimated µ̂(t) and φ̂(τ) in case 4; (g):
the LogLik of various algorithms over the number of training data for vehicle collision
dataset; (h): the LogLik for taxi pickup dataset.
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Table 4.1: EstErr and LogLik of synthetic data. µ(t) is constant in cases 1, 3 and
time-changing in cases 2, 4.

PH MISD-10 MISD-20 WH EMV

Case 1
EstErr(µ̂, µ) 0.072 9.116 14.381 5.621 14.196

EstErr(φ̂(τ), φ(τ)) 0.008 0.075 0.106 0.009 0.015
LogLik -37.91 -41.87 -45.13 -38.71 -39.58

Case 2
EstErr(µ̂(t), µ(t)) 64.362 72.847 81.008 83.883 10.946

EstErr(φ̂(τ), φ(τ)) 0.015 0.043 0.058 0.013 0.002
LogLik 93.64 91.91 90.93 93.72 96.85

Case 3
EstErr(µ̂, µ) 3.960 0.155 1.923 12.745 5.738

EstErr(φ̂(τ), φ(τ)) 0.098 0.021 0.031 0.026 0.013
LogLik -70.18 -51.66 -51.59 -53.15 -51.44

Case 4
EstErr(µ̂(t), µ(t)) 107.951 114.033 118.016 60.106 10.436

EstErr(φ̂(τ), φ(τ)) 0.042 0.064 0.165 0.029 0.018
LogLik 6.34 4.13 1.18 0.74 10.59

number of collisions on each day is about 600. Records for Sep. 18th - Oct. 6th

were used as training data and Oct. 9th - 13th were held out as test data.

In daily transportation, car collisions happening in the past will have a triggering

influence on the future because of the traffic congestion caused by the initial accident,

so there is a self-exciting phenomenon in this application. Hawkes process has

already been applied in the transportation domain in the past. However, even

when using nonparametric Hawkes process algorithm like MISD or WH, the baseline

intensity is still a constant although the triggering kernel can be nonparametric. This

is an inappropriate hypothesis in the vehicle collision application, e.g. the road is

quiet at night so the baseline intensity of car accidents is lower than that in the

day time, and the traffic is so busy at peak times that the baseline intensity will be

increased. Using the EMV inference algorithm, the time-changing baseline intensity

and a flexible triggering kernel can be simultaneously learned.

The performance of EMV (Alg. 4.2 and 4.3), WH, 6-bin MISD (MISD-6), 8-

bin MISD (MISD-8), PH, RKHSC and GC were compared. The whole observation

period T was set to 1440 minutes (24 hours) and the support of triggering kernel
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Tφ was set to 60 minutes. For hyperparameters, the bandwidth of WH was set to

1.2 and there were 6 inducing points on φ(τ) (Mg = 6) and 8 inducing points on

µ(t) (Mf = 8). The hyperparameters of RKHSC and GC were chosen based on

grid search to minimize the error between the integral of learned intensity and the

average number of timestamps on each sequence. The final result is the average of

learned µ̂(t) or φ̂(τ) of each day.

Green Taxi Pickup in New York City [48]: This dataset includes trip

records from all trips completed in green taxis in New York City from January to

June 2016. In experiments, the data from Jan. 7th to Feb. 1st were used as training

data and Jan. 2nd - 6th were held out as test data. In this period, pickup dates

and times were filtered out for long-distance trips (> 15 miles) since long-distance

trips usually have different patterns with short ones. The number of pickups each

day was about 400.

With a similar setup, the performance of all methods was compared on the taxi

pickup dataset. The whole observation period T was set to 24 hours and the support

of triggering kernel Tφ set to 1 hour.

Results For each dataset, LogLik performance of various methods was evaluated

when the number of training data varies. LogLik of EMV and other alternatives

are shown in Fig. 4.1g and Fig. 4.1h. Clearly PH, MISD-6, MISD-8, WH and

EMV outperform GC and RKHSC (both are inhomogeneous Poisson processes); this

demonstrates the necessity of utilizing Hawkes process to discover the underlying

self-exciting phenomenon in both datasets. Besides, the consistent superiority of

the EMV algorithm over other Hawkes process inference algorithms (PH, MISD and

WH) whose baseline intensity or triggering kernel is too restricted to capture the

dynamics proves that the EMV algorithm can describe µ(t) and φ(τ) in a completely

flexible manner, leading to better goodness-of-fit.

To further measure performance, the Q-Q plot was generated. A sequence of
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Table 4.2: The PreAcc of all alternatives on both real datasets.

Vehicle Collision Taxi Pickup
GC 17.3% 53.8%

RKHSC 29.2% 64.0%
PH 60.6% 67.1%

MISD-6 67.6% 68.3%
MISD-8 67.6% 67.9%

WH 67.3% 67.5%
EMV 71.7% 70.4%

timestamps in the test data was transformed by the fitted model to a set of indepen-

dent uniform random variables on the interval (0, 1) using the time rescaling theorem

[47]. Any statistical assessment that measures agreement between the transformed

data and a uniform distribution evaluates how well the fitted model agrees with the

test data. Therefore, the Q-Q plot of the transformed timestamps with respect to

the uniform distribution can be drawn. The perfect model follows a straight line

y = x. The inhomogeneous Poisson process (GC), nonparametric Hawkes process

with constant µ (WH) and nonparametric Hawkes process with time-changing µ(t)

(EMV) were compared in a Q-Q plot in Fig. 4.2. It is observed that EMV is gener-

ally closer to the straight line, which suggests its better goodness-of-fit than other

alternatives.

For the prediction task, PreAcc of all alternatives was measured on both datasets.

It is assumed that only the top 17% of a sequence is observed (ε = 0.12 for vehicle

collison and 0.24 for taxi pickup, 500 samples for Monte Carlo integration) and then

the time of the next event is predicted, and the real time of the next event, when

it occurs, is incorporated into the observed data and then the further next even is

predicted and the iteration goes on. Finally, the average PreAcc of the test data

is computed, which is shown in Tab. 4.2 where it can be observed that EMV is

obviously superior to other alternatives.



4.6. Discussion 57

(a) (b)

Figure 4.2: Q-Q plot of inhomogeneous Poisson process (GC), nonparametric
Hawkes process with constant µ (WH), nonparametric Hawkes process with time-
changing µ(t) (EMV). Vehicle collision dataset (left), taxi pickup dataset (right).

4.6 Discussion

In this section, the setting of hyperparameters and the advantages and disadvantages

of the proposed algorithm are discussed. As stated in Chapter 3, the hyperparam-

eters θ0 and θ1 have a significant effect on the estimation because they define the

covariance kernel for the GP which encodes the smoothness of the function space.

In order to tune them carefully, the hyperparameters are updated regularly in the

EM iterations to maximize the ELBO. The advantage of the proposed algorithm

is that the nonparametric baseline intensity and triggering kernel can be obtained

with the efficiency largely improved. The disadvantage is that, despite the improved

efficiency, the proposed algorithm inherits the disadvantage of variational Gaussian

approximation which has a large number of variational parameters. This makes

the algorithm still not efficient enough for very large datasets. An extension to the

mean-field variational inference is a promising approach to address these problems.
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4.7 Summary

In the vanilla Hawkes process, the baseline intensity and triggering kernel are as-

sumed to be a constant and a parametric function respectively, which is convenient

for inference but leads to limited capacity for model expression. To further general-

ize the model and perform inference from a Bayesian perspective, the transformation

of GP as prior is applied on the baseline intensity and triggering kernel and solves

with an EM-variational inference algorithm. Accelerating methods are provided to

make the inference efficient. Experiments show that the EMV inference can provide

better results than the alternatives.



Chapter 5

Nonparametric Hawkes Process

Modulated by Sigmoid Gaussian

Process∗

In Chapter 4, the link function was a quadratic transformation to guarantee the

non-negativity of intensity. In this chapter, another type of Bayesian nonparametric

Hawkes process is introduced, namely, a sigmoid GP Hawkes process where the link

function is a scaled sigmoid function.

The posterior of the baseline intensity and triggering kernel with a quadratic

link function is non-Gaussian due to the non-conjugacy between the likelihood and

prior. As will be seen later, the sigmoid link function has an advantage over the

quadratic link function because inference can be performed in a conjugate way. More

specifically, for the sigmoid GP Hawkes process, the latent Pólya-Gamma random

variables and marked Poisson processes are augmented to convert the likelihood into

a conjugate form; consequently, corresponding Gibbs sampling, EM and mean-field

∗Portions of this chapter have been deposited in arXiv: F. Zhou, Z. Li, X. Fan, Y. Wang,
A. Sowmya, F. Chen, Scalable Inference for Nonparametric Hawkes Process Using Pólya-Gamma
Augmentation. arXiv preprint arXiv:1910.13052. 29 Oct 2019 and submitted to the Journal of
Machine Learning Research.
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variational inference algorithms are proposed.

In the following, an overview of the chapter content is introduced in Sec. 5.1; a

sigmoid GP Hawkes process model is proposed in Sec. 5.2; the auxiliary variable

augmented likelihood and joint distribution are provided in Sec. 5.3; the Gibbs

sampling algorithm is proposed in Sec. 5.4 with EM algorithm in Sec. 5.5 and

mean-field variational inference in Sec. 5.6. Discussion is in Sec. 5.7 and summary

is in Sec. 5.8.

5.1 Overview

In Chapter 4, a Bayesian nonparametric Hawkes process model was proposed, as a

quadratic GP Hawkes process where the link function is chosen to be a square trans-

formation. In the setting with a quadratic link function, an EM based variational

Gaussian approximation inference algorithm was proposed. However, the posterior

is non-Gaussian since the likelihood of GP variables is non-conjugate to the prior

and an approximate inference approach has to be used, which is time consuming.

To circumvent the non-conjugate problem, a new Bayesian nonparametric Hawkes

process model is proposed: a sigmoid GP Hawkes process where the link function is

chosen to be a scaled sigmoid function. The likelihood is augmented with auxiliary

latent random variables: branching structure, Pólya-Gamma random variables and

latent marked Poisson processes. The branching structure of Hawkes process is in-

troduced to decouple µ(t) and φ(τ) to two independent components in the likelihood.

Inspired by other work [49] and [50], a sigmoid link function is used in the model and

the sigmoid converted to an infinite mixture of Gaussians involving Pólya-Gamma

random variables. The latent marked Poisson processes are augmented to linearize

the exponential integral term in the likelihood. By augmenting the likelihood in

such a way, the likelihood becomes conjugate to the GP prior. With these latent

random variables, the augmented likelihood is used to construct three efficient an-
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alytical iterative algorithms. The first one is a Gibbs sampler to sample from the

posterior; the second one is an EM algorithm to obtain the maximum a posteri-

ori (MAP) estimate; furthermore, the EM algorithm is extended to a mean-field

variational inference algorithm that is slightly slower but can handle uncertainty

with a distribution estimation rather than point estimation. It is worth noting that

the näıve implementations of all the algorithms are time-consuming. To improve

efficiency, sparse GP approximation [45] is introduced.

Specifically, the contributions made in this work are as follows:

1. By augmenting with latent branching structure, Pólya-Gamma random vari-

ables and latent marked Poisson processes, the original Hawkes likelihood is decou-

pled into two independent parts and both are conjugate to GP priors.

2. Simple and efficient Gibbs sampling, EM and mean-field variational inference

algorithms are proposed for sigmoid GP Hawkes process where the baseline intensity

and triggering kernel are both scaled sigmoid GP functions.

3. Sparse GP approximation is utilized to incorporate inducing points into the

model to drastically reduce complexity.

5.2 Sigmoid GP Hawkes Process

A GP based Bayesian nonparametric Hawkes process model is proposed, namely a

sigmoid-GP Hawkes process (SGPHP) whose baseline intensity and triggering kernel

are functions drawn from a GP prior, passed through a sigmoid link function and

scaled by an upper-bound to guarantee the non-negativity. In a näıve Bayesian

framework, the posterior of µ(t) and φ(τ) is

p(µ(t), φ(τ)|D) =
p(D|µ(t) = λ∗µσ(f), φ(τ) = λ∗φσ(g))GP(f)GP(g)∫∫

p(D|λ∗µσ(f), λ∗φσ(g))GP(f)GP(g)dfdg
, (5.1)
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where σ(·) is the sigmoid function, f and g are two functions drawn from the cor-

responding GP priors, λ∗µ and λ∗φ are the upper bounds of µ(t) and φ(τ).

In a näıve Bayesian framework, the inference of posterior of µ(t) and φ(τ) is

non-trivial because

1. µ(t) is coupled with φ(τ) in the likelihood;

2. intractable integrals in the numerator and denominator cause a doubly-intractable

problem [16];

3. the posterior is non-Gaussian.

However, as is seen later, these problems can be circumvented by augmenting the

likelihood with auxiliary latent random variables. The sigmoid link function is

chosen since it can be transformed to an infinite mixture of Gaussians; consequently,

the augmented likelihood is in a conjugate form allowing for more efficient Gibbs

sampling, EM and mean-field variational inference with explicit expressions.

5.3 Likelihood Augmentation

The likelihood augmentation is divided into 3 steps. The branching structure is

augmented into likelihood in Sec. 5.3.1. In Sec. 5.3.2, the Pólya-Gamma random

variables are augmented with the latent marked Poisson processes augmented in

Sec. 5.3.3. The final augmented likelihood and joint density are provided in Sec.

5.3.4.

5.3.1 Augmenting Branching Structure

As before, the branching structure of Hawkes process [1, 10] (see Sec. 2.1.1) is aug-

mented to the Hawkes likelihood (Eq. 2.1) to decouple µ(t) and φ(τ). The joint like-

lihood with branching structure is Eq. 2.3 with µ(t) = λ∗µσ(f(t)), φ(τ) = λ∗φσ(g(τ)).
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After introducing the branching structure, the joint likelihood is decoupled to two

independent factors.

5.3.2 Transformation of Sigmoid Function

To transform the sigmoid function, a remarkable representation discovered in the

literature of Bayesian inference for logistic regression [49] is utilized. Surprisingly,

the sigmoid function is redefined as a Gaussian representation. It was found that

the inverse hyperbolic cosine can be expressed as an infinite mixture of Gaussian

densities:

cosh−b (z/2) =

∫ ∞
0

e−z
2ω/2pPG(ω|b, 0)dω, (5.2)

where pPG(ω|b, 0) is the Pólya-Gamma distribution with ω ∈ R+. As a result, the

sigmoid function can be defined as a Gaussian representation:

σ(z) =
ez/2

2 cosh (z/2)
=

∫ ∞
0

eh(ω,z)pPG(ω|1, 0)dω, (5.3)

where h(ω, z) = z/2− z2ω/2− log 2. Moreover, the posterior Pólya-Gamma distri-

bution also known as (a.k.a.) the tilted Pólya-Gamma distribution which is used

later can be expressed as

pPG(ω|b, c) ∝ e−c
2ω/2pPG(ω|b, 0). (5.4)

Using Eq. 5.3, the products of observations σ(f(ti)) and σ(g(τij)) (τij = ti − tj)

in the likelihood Eq. 2.3 are transformed into a Gaussian form. It is worth noting

that the exact form of Pólya-Gamma distribution need not be known but only its

first order moment.
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5.3.3 Transformation of Exponential Integral

Here, only the baseline intensity part is discussed. All derivations in the triggering

kernel part are the same as the baseline intensity part except for some notations.

Utilizing Eq. 5.3 and the sigmoid property σ(z) = 1−σ(−z), the exponential integral

in the likelihood Eq. 2.3 can be rewritten as

exp

(
−
∫
T

λ∗µσ(f(t))dt

)
=

exp

(
−
∫
T

∫
R+

(
1− eh(ωµ,−f(t))

)
λ∗µpPG(ωµ|1, 0)dωµdt

)
.

(5.5)

According to Campbell’s theorem [51] (see below), the right-hand side of Eq. 5.5 is

a characteristic functional of a marked Poisson process, and can be rewritten as

exp

(
−
∫
T

λ∗µσ(f(t))dt

)
= Epλµ

 ∏
(ωµ,t)∈Πµ

eh(ωµ,−f(t))

 , (5.6)

where Πµ = {(ωµm, tm)}Mµ

m=1 denotes a random realization of a marked Poisson

process and pλµ is the probability measure of the marked Poisson process Πµ with

intensity λµ(t, ωµ) = λ∗µpPG(ωµ|1, 0). The events {tm}Mµ

m=1 follow a Poisson process

with rate λ∗µ and the latent Pólya-Gamma variable ωµm denotes the independent

mark at each location tm. The derivation is shown now.

Campbell’s Theorem Let ΠẐ = {(zn,ωn)}Nn=1 be a marked Poisson process on

the product space Ẑ = Z × Ω with intensity Λ(z,ω) = Λ(z)p(ω|z). Λ(z) is the

intensity for the unmarked Poisson process {zn}Nn=1 with ωn ∼ p(ωn|zn) being an

independent mark drawn at each zn. Furthermore, a function h(z,ω) : Z × Ω→ R

is defined, and the sum H(ΠẐ) =
∑

(z,ω)∈ΠẐ
h(z,ω). If Λ(z,ω) <∞, then

EΠẐ
[exp (ξH(ΠẐ))] = exp

[∫
Ẑ

(
eξh(z,ω) − 1

)
Λ(z,ω)dωdz

]
, (5.7)
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for any ξ ∈ C. Eq. 5.7 defines the characteristic functional of a marked Poisson

process. This proves Eq. 5.6. The mean and variance are defined as:

EΠẐ
[H(ΠẐ)] =

∫
Ẑ
h(z,ω)Λ(z,ω)dωdz

VarΠẐ
[H(ΠẐ)] =

∫
Ẑ

[h(z,ω)]2Λ(z,ω)dωdz.

(5.8)

5.3.4 Augmented Likelihood and Joint Density

Substituting Eq. 5.3 and Eq. 5.6 into Eq. 2.3, the following are obtained:

(1) The augmented joint likelihood of baseline intensity part

p(D,Bii|λ∗µ, f)

=
N∏
i=1

(
λ∗µσ(f(ti))

)bii exp

(
−
∫
T

λ∗µσ(f(t))dt

)

=
N∏
i=1

(∫ ∞
0

λ∗µe
h(ωii,f(ti))pPG(ωii|1, 0)dωii

)bii
· Epλµ

 ∏
(ωµ,t)∈Πµ

eh(ωµ,−f(t))


=

∫∫ N∏
i=1

(
λµ(ti, ωii)e

h(ωii,f(ti))
)bii · pλµ(Πµ|λ∗µ)

∏
(ωµ,t)∈Πµ

eh(ωµ,−f(t))dωiidΠµ

(5.9)

with ωii denoting a vector of ωii on each ti, Bii being the diagonal of branching struc-

ture B and λµ(ti, ωii) = λ∗µpPG(ωii|1, 0). Therefore, the augmented joint likelihood

is

p(D,Πµ,ωii,Bii|λ∗µ, f)

=
N∏
i=1

(
λµ(ti, ωii)e

h(ωii,f(ti))
)bii · pλµ(Πµ|λ∗µ)

∏
(ωµ,t)∈Πµ

eh(ωµ,−f(t)).
(5.10)

Incorporating the priors of λ∗µ and f into Eq. 5.10, the joint distribution over all

variables is obtained. Without loss of generality, an improper prior p(λ∗µ) = 1/λ∗µ
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[37] and a symmetric GP prior GP(f |0, Kf ) are utilized here.

p(D,Πµ,ωii,Bii, λ
∗
µ, f)

=
N∏
i=1

(
λµ(ti, ωii)e

h(ωii,f(ti))
)bii · pλµ(Πµ|λ∗µ)

∏
(ωµ,t)∈Πµ

eh(ωµ,−f(t)) · λ∗µ
−1GP(f).

(5.11)

(2) The augmented joint likelihood of triggering kernel part

p(D, {Πφi}Ni=1,ωij,Bij|λ∗φ, g)

=
N∏
i=2

i−1∏
j=1

(
λφ(τij, ωij)e

h(ωij ,g(τij))
)bij · N∏

i=1

pλφ(Πφi |λ∗φ)
∏

(ωφ,τ)∈Πφi

eh(ωφ,−g(τ))

 (5.12)

and the augmented joint distribution of triggering kernel part is

p(D, {Πφi}Ni=1,ωij,Bij, λ
∗
φ, g)

=
N∏
i=2

i−1∏
j=1

(
λφ(τij, ωij)e

h(ωij ,g(τij))
)bij ·

N∏
i=1

pλφ(Πφi|λ∗φ)
∏

(ωφ,τ)∈Πφi

eh(ωφ,−g(τ))

 · λ∗φ−1GP(g),

(5.13)

where τij = ti − tj, GP(g) is symmetric GP(g|0, Kg), pλφ is the probability measure

of the corresponding latent marked Poisson process Πφi = {(ωφm, τm)}Mφi
m=1 with

intensity λφ(τ, ωφ) = λ∗φpPG(ωφ|1, 0), ωij denotes the vector of ωij on each τij and Bij

are the entries off the diagonal of branching structure. It is worth noting that there

exist N independent latent marked Poisson processes because of the exponential

integral product term in Eq. 2.3. The proof is the same as for the µ(t) part and is

omitted here.

The motivation for augmenting auxiliary latent random variables should now be

clear. The augmented representation of likelihood contains the GP variables f(·)

and g(·) only linearly and quadratically in the exponents and is thus conjugate to
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the GP prior.

5.4 Gibbs Sampler

A näıve Gibbs sampler is derived in this section. However, the näıve implementation

is time-consuming because of the cubic complexity w.r.t the number of observations

and latent Poisson events when sampling f and g. This issue has been discussed in

[16]. To circumvent the problem, sparse GP approximation is utilized to introduce

some inducing points to make the inference efficient.

5.4.1 Näıve Gibbs Sampler

Sampling the Pólya-Gamma variables The conditional posteriors of Pólya-

Gamma variables ωii and ωij only depend on the function values f and g at the

observations ti and τij:

p(ωii|f) =
N∏
i=1

(pPG(ωii|1, f(ti)))
bii

p(ωij|g) =
N∏
i=2

i−1∏
j=1

(pPG(ωij|1, g(τij)))
bij ,

(5.14)

where the posterior Pólya-Gamma distribution defined in Eq. 5.4 is utilized. The

Pólya-Gamma random variable can be efficiently sampled by a method proposed in

[49].

Sampling the upper bounds The conditional posteriors of upper bounds λ∗µ

and λ∗φ depend on the branching structure and latent marked Poisson processes.

p(λ∗µ|Bii,Πµ) = Gamma(λ∗µ|Nµ +Mµ, T )

p(λ∗φ|Bij,Πφ) = Gamma(λ∗φ|Nφ +Mφ, NTφ),
(5.15)
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where Nµ =
∑N

i=1 bii, Mµ = |Πµ|, Nφ =
∑N

i=2

∑i−1
j=1 bij and Mφ =

∑N
i=1Mφi =∑N

i=1

∣∣Πφi

∣∣ with | · | denoting the number of points on a Poisson process.

Sampling the function values Due to the augmentation of Pólya-Gamma ran-

dom variables, the likelihoods of GP variables fNµ+Mµ and gNφ+Mφ
are conjugate to

the GP priors. Therefore, the conditional posteriors are still Gaussian:

p(fNµ+Mµ|ωii,Πµ) = N (mNµ+Mµ ,ΣNµ+Mµ)

p(gNφ+Mφ
|ωij, {Πφi}Ni=1) = N (mNφ+Mφ

,ΣNφ+Mφ
)

(5.16)

with covariance matrix ΣNµ+Mµ = [Dµ + K−1
Nµ+Mµ

]−1. Dµ is a diagonal matrix with

its first Nµ entries being ωii and the following Mµ entries being {ωµm}
Mµ

m=1. KNµ+Mµ

is the covariance matrix of the GP prior evaluated at the observed points {ti}Nµi=1 and

the latent points {tm}Mµ

m=1. The mean mNµ+Mµ = ΣNµ+Mµ ·vNµ+Mµ with the first Nµ

entries of vNµ+Mµ being 0.5 and the following Mµ entries being −0.5. The solution

for the mean and covariance matrix of gNφ+Mφ
is the same, with the corresponding

subscripts being replaced.

Sampling the latent marked Poisson processes The conditional posterior of

the marked point process is

p(Πµ|f, λ∗µ) =
pλµ(Πµ|λ∗µ)

∏
(ωµ,t)∈Πµ

eh(ωµ,−f(t))∫
pλµ(Πµ|λ∗µ)

∏
(ωµ,t)∈Πµ

eh(ωµ,−f(t))dΠµ

. (5.17)

As proved elsewhere [50], this conditional point process is again a marked Poisson

process by utilizing the Campbell theorem to calculate its characteristic function.

A more concise proof is provided here. Using Eq. 5.6 to convert the denominator,
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Eq. 5.17 can be written as

p(Πµ|f, λ∗µ)

=
pλµ(Πµ|λ∗µ)

∏
(ωµ,t)∈Πµ

eh(ωµ,−f(t))

exp (−
∫∫

(1− eh(ωµ,−f(t)))λ∗µpPG(ωµ|1, 0)dωµdt)

=
∏

(ωµ,t)∈Πµ

(
eh(ωµ,−f(t))λ∗µpPG(ωµ|1, 0)

)
· exp

(
−
∫∫

eh(ωµ,−f(t))λ∗µpPG(ωµ|1, 0)dωµdt

)
.

(5.18)

It is straightforward to see that the above conditional posterior is just in the likeli-

hood form of a marked Poisson process with intensity function

Λµ(t, ωµ) = eh(ωµ,−f(t))λ∗µpPG(ωµ|1, 0) = λ∗µσ(−f(t))pPG(ωµ|1, f(t)). (5.19)

The derivation of the conditional posterior of Πφ is the same as for Πµ. It is

worth noting that there exist N independent marked Poisson processes with the

same intensity function Λφ(τ, ωφ) = λ∗φσ(−g(τ))pPG(ωφ|1, g(τ)).

For sampling from the posterior marked Poisson processes, the timestamps tm

(τm) are first drawn with the rate λ∗µσ(−f(t)) (λ∗φσ(−g(τ))) by using the thinning

algorithm [38], and then the marks ωµ (ωφ) are drawn from the conditional distri-

bution pPG(ωµ|1, f(t)) (pPG(ωφ|1, g(τ))).

Sampling the branching structure After combining Eq. 5.11 and Eq. 5.13 and

integrating out ωii and ωij, the conditional posterior of B is obtained:

p(B|λ∗µ, λ∗φ, f, g) ∝
N∏
i=1

(µ(ti))
bii

N∏
i=2

i−1∏
j=1

(φ(τij))
bij (5.20)
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with µ(ti) = λ∗µσ(f(ti)) and φ(τij) = λ∗φσ(g(τij)). This is just a multinomial distri-

bution with

p(bii = 1) =
µ(ti)

µ(ti) +
∑i−1

j=1 φ(τij)

p(bij = 1) =
φ(τij)

µ(ti) +
∑i−1

j=1 φ(τij)

(5.21)

which is a well-known result [8], [10].

5.4.2 Algorithm Speedup

The näıve Gibbs sampler presented in Sec. 5.4.1 is impractical. The reasons include

the following:

1. The bottleneck of the algorithm is in the step of sampling function values.

Because matrix inversion has to be performed, the complexity is O((Nµ +

Mµ)3 + (Nφ +Mφ)3) where Nµ +Nφ = N . This means that it is non-scalable

to even a few hundreds of observations.

2. The function values have to be sampled twice in one MCMC loop. Each time

that the branching structure or the latent marked Poisson process is updated,

the function values have to be updated once in order to avoid dimension mis-

match. This slows down the Gibbs sampler even further.

To circumvent these problems, the sparse GP approximation is utilized to in-

troduce some inducing points. f and g are supposed to be dependent on their

corresponding inducing points {ts}Sµs=1 and {τs}
Sφ
s=1; the function values of f and g

at these inducing points are fts and gτs . Given a sample fts and gτs , fNµ+Mµ and

gNφ+Mφ
in Eq. 5.16 are assumed to be the posterior GP mean functions:

fNµ+Mµ = KttsK
−1
tstsfts , gNφ+Mφ

= KττsK
−1
τsτsgτs (5.22)

with Ktts and Kττs being the kernel matrixes w.r.t. the observations and inducing
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points while Ktsts and Kτsτs are w.r.t. inducing points only.

Now the conditional posteriors of function values are transformed from observa-

tions to inducing points:

p(fts|ωii,Πµ) = N (mts ,Σts)

p(gτs|ωij, {Πφi}Ni=1) = N (mτs ,Στs)
(5.23)

with Σts =
[
K−1
tstsK

T
ttsDµKttsK

−1
tsts + K−1

tsts

]−1
and mts = ΣtsK

−1
tstsK

T
ttsvNµ+Mµ . The

solution for Στs and mτs is the same with the corresponding subscripts being re-

placed.

With sparse GP approximation, the complexity is reduced to O(S3
µ + S3

φ) with

Sµ � Nµ +Mµ, Sφ � Nφ +Mφ. What makes this even more remarkable is the fact

that the function values only need to be sampled once in one MCMC loop because

they only depend on inducing points which are fixed during the sampling process.

Moreover, the sampling of latent marked Poisson processes can be parallelized.

5.4.3 Hyperparameters

Throughout this work, the GP covariance kernel used is the squared exponential

kernel k(x, x′) = θ0 exp
(
− θ1

2
‖x− x′‖2

)
. The hyperparameters θ0 and θ1 can be

sampled by a Metropolis-Hasting method [27]. Normally, they are updated every

20 loops.

Additional hyperparameters are the number and location of inducing points

which affect the complexity and estimation quality of µ(t) and φ(τ). A large num-

ber of inducing points will lead to high complexity while a small number cannot

capture the dynamics. For fast inference, the inducing points are uniformly located

on the domain. Another advantage of uniform location is that the kernel matrix has

Toeplitz structure [46] which means that the matrix inversion can be implemented

more efficiently. The number of inducing points is gradually increased until no more
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significant improvement occurs. The final pseudo code is provided in Alg. 5.1.

Algorithm 5.1: Accelerated Gibbs sampler for SGPHP

Result: µ(t), φ(τ)
Initialize hyperparameters and B, λ∗µ, λ∗φ, ωii, ωij, fts , gτs , Πµ, {Πφi}Ni=1;

for do
Sample ωii and ωij with Eq.(5.14);
Sample λ∗µ and λ∗φ with Eq.(5.15);

Sample fts and gτs with Eq.(5.23);
Sample Πµ and {Πφi}Ni=1 with Eq.(5.19);
Sample B with Eq.(5.21);
Sample hyperparameters with Metropolis-Hasting algorithm.

end

5.4.4 Experimental Results

The performance of Gibbs sampler for SGPHP was evaluated on both synthetic

and real-world data. Specifically, the Gibbs sampler was compared to the following

alternatives:

1. Hawkes Process (HP): the vanilla Hawkes process with constant µ and ex-

ponential decay triggering kernel α exp(−β(t−ti)). The inference is performed

by MLE.

2. Wiener-Hopf (WH): this is a nonparametric algorithm for Hawkes process

where µ is constant and φ(τ) is a continuous function. The inference is based

on the solution of a Wiener-Hopf equation [11].

3. Majorization Minimization Euler-Lagrange (MMEL): this is another

nonparametric algorithm for Hawkes process with constant µ and continuous

φ(τ). This algorithm similarly utilizes the branching structure and estimates

φ(τ) by an Euler-Lagrange equation [10].

The following metrics were used to evaluate the performance of the various methods:
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• TestLL: the log-likelihood of test data using the trained model. This is a metric

describing the model prediction ability. It is used to measure the performance of

synthetic and real data.

• EstErr : the mean squared error between the estimated µ̂(t), φ̂(τ) and the ground

truth. It is only used for fictitious data. It is only used for synthetic data.

• AutCor : the lag-k autocorrelation between states of Markov chain. It is used

for checking the mixing performance of Markov chain. It is used to measure the

performance of synthetic data.

• PreAcc: given an event sequence {t1, ..., ti−1}, the goal is to predict the time of

ti. The expectation of ti should be E[ti] =
∫∞
ti−1

tp(ti = t)dt with P (ti = t) =

λ(t) exp
(
−
∫ t
ti−1

λ(s)ds
)

. The integral can be estimated by Monte Carlo method.

Multiple timestamps in a sequence are predicted: if the predicted t̂i is within an

error bound ε, then it is considered to be a correct prediction; else it is incorrect.

The percentage of correct predictions is defined as the prediction accuracy. It is

used to measure the performance of real data.

5.4.4.1 Synthetic Data Experiments

In synthetic data experiments, the thinning algorithm [38] is used to generate 100

sets of training data and 10 sets of test data with Tφ = 6 and T = 100 in three

cases:

1. µ(t) =

1 (0 < t ≤ T/2)

2 (T/2 < t < T )
and φ(τ) = 1 · exp(−2τ);

2. µ = 1 and φ(τ) =

0.33 sin τ (0 < τ ≤ π)

0 (π < τ < Tφ)
;

3. µ(t) = sin
(

2π
T
· t
)

+ 2 (0 < t < T ) and φ(τ) = 0.3
(
sin(2π

3
· τ) + 1

)
·

exp(−0.7τ) (0 < τ < Tφ).
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In Case1, there is a non-constant µ(t) which is a piecewise constant function,

while Case 2 has a half sinusoidal φ(τ). Case 3 is the most general one with time-

changing µ(t) and sinusoidal exponential decay φ(τ).

The inducing points and hyperparameters are optimized for inference. The pos-

terior mean µ̂(t) and φ̂(τ) are shown in Fig. 5.1. Clearly, they capture the structure

of the underlying rate very well. In Tab. 5.1, the results confirm that the SGPHP

model outperforms other alternatives in most cases w.r.t. TestLL and EstErr. For

HP, when the underlying µ(t) and φ(τ) are in complex forms, the estimated baseline

intensity and triggering kernel are far away from the ground truth due to parametric

constraints. For WH and MMEL, the constant limitation on µ(t) still exists even

though φ(τ) has been relaxed to be nonparametric. On the contrary, the SGPHP

model provides nonparametric µ̂(t) and φ̂(τ) concurrently.

For Markov chain samplers to be efficient, correlations between samples should

decay quickly, and Fig. 5.1g shows that the autocorrelation reaches a plateau of 0

after 80 samples, indicating excellent mixing performance of the sampler.

For efficiency, the running time of the näıve Gibbs sampler is compared to the

accelerated Gibbs sampler and MMEL algorithm with the same number of loops,

as well as the WH algorithm. In Fig. 5.1h, WH is the fastest algorithm while the

accelerated Gibbs sampler is the runner-up. The reason is that WH algorithm is

a method based on solving a linear system without the need of iterations, while

the Gibbs sampler and MMEL algorithm both need iterative solutions. The näıve

Gibbs sampler is the least efficient because of the cubic complexity w.r.t the number

of observations and latent Poisson events. In Tab. 5.2 the efficiency of different

iterative algorithms is shown on different sizes of data. The result confirms that the

accelerated Gibbs sampler scales well enough with data size.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.1: The synthetic data experimental results. (a) and (b): estimated µ̂(t)
and φ̂(τ) in case 1; (c) and (d) for case 2; (e) and (f) for case 3; (g): autocorrelation
of µ(t) and φ(τ) samples in the Markov chain; (h): running time of WH, accelerated
Gibbs sampler, MMEL and näıve Gibbs sampler on 225 observation points.
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Table 5.1: The EstErr and TestLL of fictitious data.

HP WH MMEL SGPHP

Case 1
EstErr(µ̂, µ) 0.38 0.48 0.43 0.05

EstErr(φ̂, φ) 0.0011 0.0012 0.0022 0.0012
TestLL 60.61 60.70 59.92 62.16

Case 2
EstErr(µ̂, µ) 0.26 0.62 0.88 0.31

EstErr(φ̂, φ) 0.0293 0.0071 0.0123 0.0069
TestLL -8.19 -6.98 -9.74 -5.48

Case 3
EstErr(µ̂, µ) 1.00 0.84 0.81 0.07

EstErr(φ̂, φ) 0.0040 0.0048 0.0031 0.0012
TestLL 260.93 260.50 259.98 263.81

Table 5.2: The running time of different iterative algorithms on different sizes of
data. (Time unit: minutes)

# Points Accelerated Gibbs MMEL Näıve Gibbs
100 0.89 1.25 6.23
200 2.93 5.60 52.53
400 7.05 27.92 —

5.4.4.2 Real Data Experiments

The various methods were compared on two real-world crime datasets. In criminol-

ogy, the presence of a self-exciting phenomenon from past crimes to future ones has

been reported [42]. The two datasets both comprise times of security violation or

report in a period of several years. The ground truth information is unavailable for

the real world data, therefore EstErr cannot be utilized to measure the performance.

As a result, for each dataset the goodness-of-fit is tested on the test data (TestLL)

and the time of event occurring in a future time window is predicted (PreAcc).

Crime in Vancouver (Canada) [52]

The dataset of crimes in Vancouver comes from the Vancouver Open Data Cata-

logue. It includes miscellaneous crimes from 2003-01-01 to 2017-07-13. The columns
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are crime type, year, month, day, hour, minute, block, neighbourhood, latitude, lon-

gitude and other information.

NYPD Complaint Data [40]

This dataset includes all valid felony, misdemeanour and violation crimes re-

ported to the New York police department (NYPD) for all complete quarters in

2017. The columns are complaint number, date, time, offense description, borough

and other information.

Preliminary Setup For the Crime in Vancouver dataset, the theft records from

June to November 2016 occurring in the central business district were filtered out

and a small time interval was added to separate all the simultaneously occurring

records. For the NYPD Complaint Dataset, the complaints records in Brooklyn and

Queens in 2016 with the offense description of petit larceny were filtered out. For

each of these datasets, the timestamps of events were split into training and test

sets. The precise split varies for each dataset, in particular for Crime in Vancouver,

the first 519 data points were selected as training set to train the models, with the

rest being test data (time unit: days); for NYPD Complaint Data, the first 324 data

points were selected as training set with the rest being test (time unit: days). For

the prediction task, it is assumed that only the top 17% of a sequence is observed

(ε = 0.12 for Crime in Vancouver and 0.89 for NYPD Complaint Data, 400 samples

for Monte Carlo integration) and the time of next event is predicted, then the real

time of occurrence of the next event is incorporated into the observed data before

the next one is predicted, and so on.

Results The TestLL of SGPHP and other alternatives are shown in Tab. 5.3. It

can be observed that WH, MMEL and SGPHP all outperform HP, which demon-

strates the necessity of nonparametric models to capture the underlying dynamic

triggering effect. Besides, the consistent superiority of SGPHP over other non-
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parametric models with constant baseline intensity shows that the SGPHP model

can capture the completely flexible µ(t) and φ(τ) concurrently, leading to better

goodness-of-fit. The PreAcc of all alternatives were measured on both datasets.

The average PreAcc of the test data is shown in Fig. 5.2 where SGPHP is clearly

superior to other alternatives.

Table 5.3: TestLL of SGPHP and other alternatives on two real datasets.

Dataset HP WH MMEL SGPHP
Crime in Vancouver 380.88 400.36 405.22 428.06

NYPD Complaint Data -209.02 -197.21 -198.85 -194.88

Figure 5.2: The PreAcc of SGPHP and other alternatives on two real datasets.

5.5 EM Algorithm

With the original likelihood Eq. 2.1 and GP priors GP(f) and GP(g) (symmetric

prior GP(·|0, K·)), the log-posterior corresponds to a penalized log-likelihood. As

discussed for GP models with likelihood depending on finite inputs only [24], the

regularizer is given by the squared reproducing kernel Hilbert space (RKHS) norm
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corresponding to the GP kernel. Therefore

λ̂∗µ, f̂ , λ̂
∗
φ, ĝ =argmax

{
log p(D|λ∗µ, f, λ∗φ, g)− 1

2
‖f‖2

Hkf
− 1

2
‖g‖2

Hkg

}
, (5.24)

where λ̂∗µ, f̂ , λ̂
∗
φ, ĝ are the MAP estimates and ‖·‖2

Hk is the squared RKHS norm with

kernel k. The regularizer is the functional counterpart of a log Gaussian prior. In-

stead of performing direct optimization, an EM algorithm with augmented auxiliary

variables is proposed. Specifically, a lower-bound of the log-posterior is proposed:

Q((λ∗µ, f, λ
∗
φ, g)|(λ∗µ, f, λ∗φ, g)old)

= E
[
log p(D,Πµ,ωii, {Πφi}Ni=1,ωij,B|λ∗µ, f, λ∗φ, g)

]
− 1

2
‖f‖2

Hkf
− 1

2
‖g‖2

Hkg ,
(5.25)

with E over P (Πµ,ωii, {Πφi}Ni=1,ωij,B|(λ∗µ, f, λ∗φ, g)old).

Because of auxiliary variables augmentation, the GP variables are in a quadratic

form in the lower-bound, which results in an analytical solution in the M step.

5.5.1 E Step

In the E step, the conditional density P (Πµ,ωii, {Πφi}Ni=1,ωij,B|(λ∗µ, f, λ∗φ, g)old) is

derived and then the lower-bound Q is computed.

5.5.1.1 Conditional Density

The conditional density of Πµ, ωii, {Πφi}Ni=1, ωij, B given (λ∗µ, f, λ
∗
φ, g)old can be

factorized and obtained from Eq. 5.10 and Eq. 5.12. More specifically, details of

these factors are provided.

1. The conditional distributions of Pólya-Gamma variables ωii and ωij depend
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on the function values fold and gold at ti and τij:

p(ωii|fold) =
N∏
i=1

pPG(ωii|1, fold(ti))

p(ωij|gold) =
N∏
i=2

i−1∏
j=1

pPG(ωij|1, gold(τij)),

(5.26)

where B is marginalizes out and the tilted Pólya-Gamma distribution pPG(ω|b, c) ∝

e−c
2ω/2pPG(ω|b, 0) is utilized, with the first order moment being E[ω] = b

2c
tanh c

2

[49].

2. The conditional density of Πµ depends on fold and λ∗µold
:

p(Πµ|fold, λ
∗
µold

) =
pλµ(Πµ|λ∗µold

)
∏

(ωµ,t)∈Πµ
eh(ωµ,−fold(t))∫

pλµ(Πµ|λ∗µold
)
∏

(ωµ,t)∈Πµ
eh(ωµ,−fold(t))dΠµ

. (5.27)

Using Eq. 5.5 and Eq. 5.6 to convert the denominator, Eq. 5.27 can be rewritten

as

p(Πµ|fold, λ
∗
µold

)

=
pλµ(Πµ|λ∗µold

)
∏

(ωµ,t)∈Πµ
eh(ωµ,−fold(t))

exp (−
∫∫

(1− eh(ωµ,−fold(t)))λ∗µold
pPG(ωµ|1, 0)dωµdt)

=
∏

(ωµ,t)∈Πµ

(
eh(ωµ,−fold(t))λ∗µold

pPG(ωµ|1, 0)
)

· exp

(
−
∫∫

eh(ωµ,−fold(t))λ∗µold
pPG(ωµ|1, 0)dωµdt

)
.

(5.28)

It is straightforward to see the above conditional distribution is in the likelihood

form of a marked Poisson process with intensity function:

Λµ(t, ωµ) = eh(ωµ,−fold(t))λ∗µold
pPG(ωµ|1, 0)

= λ∗µold
σ(−fold(t))pPG(ωµ|1, fold(t)).

(5.29)

The derivation of the conditional distribution of Πφi is the same as that of Πµ,

with the corresponding subscripts being replaced. It is worth noting that there exist
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N independent marked Poisson processes {Πφi}Ni=1 with the same intensity function

Λφ(τ, ωφ) = λ∗φold
σ(−gold(τ))pPG(ωφ|1, gold(τ)). (5.30)

3. Combining Eq. 5.10 and Eq. 5.12 and marginalizing out ωii and ωij, the

conditional distribution of B is obtained:

p(B|(λ∗µ, f, λ∗φ, g)old) ∝
N∏
i=1

(µold(ti))
bii

N∏
i=2

i−1∏
j=1

(φold(τij))
bij , (5.31)

with µold(ti) = λ∗µold
σ(fold(ti)) and φold(τij) = λ∗φold

σ(gold(τij)). This is a multinomial

distribution with

p(bii = 1) =
µold(ti)

µold(ti) +
∑i−1

j=1 φold(τij)

p(bij = 1) =
φold(τij)

µold(ti) +
∑i−1

j=1 φold(τij)
.

(5.32)

5.5.1.2 Lower-bound of Log-posterior

Given those conditional densities above, the lower-bound Q can be computed. The

expectation of log-likelihood (ELL) term in Eq. 5.25 can be rewritten as the sum-

mation of the baseline intensity part and the triggering kernel part. The ELL of

baseline intensity part is

ELLµ(λ∗µ, f) = EP (Πµ,ωii,Bii|(λ∗µ,f,λ∗φ,g)old)

[
log p(D,Πµ,ωii,Bii|λ∗µ, f)

]
= −1

2

∫
T

Aµ(t)f 2(t)dt+

∫
T

Bµ(t)f(t)dt− λ∗µT(
N∑
i=1

E(bii) +

∫∫
Λµ(t, ωµ)dωµdt

)
log λ∗µ,

(5.33)
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where

Aµ(t) =
N∑
i=1

E[ωii]E[bii]δ(t− ti) +

∫ ∞
0

ωµΛµ(t, ωµ)dωµ

Bµ(t) =
1

2

N∑
i=1

E[bii]δ(t− ti)−
1

2

∫ ∞
0

Λµ(t, ωµ)dωµ,

(5.34)

with E over P (ωii|fold(ti)) or P (bii|(λ∗µ, f, λ∗φ, g)old).

Similarly, the ELL of triggering kernel part is written as

ELLφ(λ∗φ, g) =EP ({Πφi},ωij ,Bij |(λ∗µ,f,λ∗φ,g)old)

[
log p(D, {Πφi},ωij,Bij|λ∗φ, g)

]
= −1

2

∫
Tφ

Aφ(τ)g2(τ)dτ +

∫
Tφ

Bφ(τ)g(τ)dτ −Nλ∗φTφ(
N∑
i=2

i−1∑
j=1

E(bij) +N

∫∫
Λφ(τ, ωφ)dωφdτ

)
log λ∗φ,

(5.35)

where

Aφ(τ) =
∑
i,j

E[ωij]E[bij]δ(τ − τij) +N

∫ ∞
0

ωφΛφ(τ, ωφ)dωφ

Bφ(τ) =
1

2

∑
i,j

E[bij]δ(τ − τij)−
N

2

∫ ∞
0

Λφ(τ, ωφ)dωφ,

(5.36)

with E over P (ωij|gold(τij)) or P (bij|(λ∗µ, f, λ∗φ, g)old).

However, the computation of ELL is intractable for general GP priors due to the

fact that ELL is a functional. To circumvent the problem, the sparse GP approx-

imation is utilized to introduce some inducing points. f and g are supposed to be

dependent on their corresponding inducing points {ts}Sµs=1 and {τs}
Sφ
s=1; the function

values of f and g at these inducing points are fts and gτs . Given a sample fts and

gτs , f(t) and g(τ) in Eq. 5.33 and Eq. 5.35 are assumed to be the posterior mean

functions

f(t) = kTtstK
−1
tstsfts , g(τ) = kTτsτK

−1
τsτsgτs (5.37)

with kTtts and kTττs being the kernel vector w.r.t. the observations and inducing points

while Ktsts and Kτsτs being w.r.t. inducing points only.
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Substituting Eq. 5.37 to Eq. 5.33 and Eq. 5.35,

Q((λ∗µ, fts , λ
∗
φ,gτs)|(λ∗µ, fts , λ∗φ,gτs)old)

= ELLµ(λ∗µ, fts) + ELLφ(λ∗φ,gτs)−
1

2
fTtsK

−1
tstsfts −

1

2
gTτsK

−1
τsτsgτs .

(5.38)

5.5.2 M Step

In the M step, the lower-boundQ is maximized. The optimal parameters λ̂∗µ, f̂ts , λ̂
∗
φ, ĝτs

can be obtained by setting the gradient of Eq. 5.38 to zero. Due to auxiliary variables

augmentation, analytical solutions are obtained:

λ̂∗µ =

(
N∑
i=1

pii +Mµ

)
/T

λ̂∗φ =

(
N∑
i=2

i−1∑
j=1

pij +NMφ

)
/(NTφ)

f̂ts = ΣtsK
−1
tsts

∫
T

Bµ(t)ktstdt

ĝτs = ΣτsK
−1
τsτs

∫
Tφ

Bφ(τ)kτsτdτ

(5.39)

where Σts =
[
K−1
tsts

∫
Aµ(t)ktstk

T
tstdtK

−1
tsts + K−1

tsts

]−1
, Mµ =

∫∫
Λµ(t, ωµ)dωµdt, Στs =[

K−1
τsτs

∫
Aφ(τ)kτsτk

T
τsτdτK

−1
τsτs + K−1

τsτs

]−1
, Mφ =

∫∫
Λφ(τ, ωφ)dωφdτ , pii = p(bii =

1), pij = p(bij = 1). All intractable integrals can be solved by Gaussian quadrature.

5.5.3 Complexity

Another advantage of sparse GP approximation is that the complexity of matrix

inversion is fixed at O(S3
µ+S3

φ) where Sµ (or Sφ)� N . This results in a complexity

that scales almost linearly with data size: O(NL) where L =
∫
Tφ

µ(t)
1−

∫
φ(τ)dτ

dt � N

due to the sparsity of expectation of the branching structure: previous points that

are more than Tφ far away from event i have no influence on event i (E[bij] = 0).
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5.5.4 Hyperparameters

Throughout this chapter, the GP covariance kernel is the squared exponential kernel

k(x, x′) = θ0 exp
(
− θ1

2
‖x− x′‖2

)
. The hyperparameters θ0 and θ1 can be optimized

by performing maximization of Q over θ = {θ0, θ1} using numerical packages. Nor-

mally, θ is updated every 20 iterations.

Additional hyperparameters are the number and location of inducing points

which affect the complexity and estimation quality of µ(t) and φ(τ). A large num-

ber of inducing points will lead to high complexity, while a small number cannot

capture the dynamics. For fast inference, the inducing points are uniformly located

on the domain. Another advantage of uniform location is that the kernel matrix

has Toeplitz structure [46] which means that matrix inversion can be implemented

more efficiently. The number of inducing points is gradually increased until no more

significant improvement occurs. The final pseudo code is provided in Alg. 5.2.

Algorithm 5.2: EM algorithm for SGPHP

Result: µ(t) = λ∗µσ(f(t)), φ(τ) = λ∗φσ(g(τ))

Initialize hyperparameters and B, λ∗µ, λ∗φ, ωii, ωij, fts , gτs , Πµ, {Πφi}Ni=1;

for do
Update the posterior of ωii and ωij by Eq. 5.26;
Update intensities of Πµ and {Πφ} by Eq. 5.29 and 5.30;
Update the posterior of B by Eq. 5.32;
Update λ∗µ, fts , λ

∗
φ and gτs by Eq. 5.39;

Update hyperparameters.
end

5.5.5 Experimental Results

The synthetic and real data experimental results of EM are shown together with

that of the mean-field variational inference in Sec. 5.6.3.
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5.6 Mean-field Variational Inference

The EM algorithm is now extended to a mean-field variational inference [37] algo-

rithm which solves the inference problem slightly slower than EM, but can provide

uncertainty with a distribution estimation rather than point estimation.

In variational inference, the posterior distribution over latent variables is ap-

proximated by a variational distribution. The optimal variational distribution is

chosen by minimising the KL divergence or equivalently by maximizing the ELBO.

A common approach is the mean-field method where the variational distribution is

assumed to factorize over some partition of latent variables.

5.6.1 Optimal Variational Distributions

For the problem at hand, the joint distribution over all variables is shown in Eq. 5.11

and 5.13. It is assumed that the variational distribution q can be factorized as

q(Πµ,ωii, {Πφi}Ni=1,ωij,B, λ
∗
µ, f, λ

∗
φ, g) =

q1(Πµ,ωii, {Πφi}Ni=1,ωij,B)q2(λ∗µ, f, λ
∗
φ, g).

(5.40)

A standard derivation in the variational mean-field approach shows that the

optimal distribution for each factor maximizing the ELBO is given by

logq1(Πµ,ωii, {Πφi}Ni=1,ωij,B) =

Eq2 [log p(Πµ,ωii, {Πφi}Ni=1,ωij,B, λ
∗
µ, f, λ

∗
φ, g)] + C1,

logq2(λ∗µ, f, λ
∗
φ, g) =

Eq1 [log p(Πµ,ωii, {Πφi}Ni=1,ωij,B, λ
∗
µ, f, λ

∗
φ, g)] + C2.

(5.41)

Substituting Eq. 5.11 and 5.13 into Eq. 5.41, the optimal distribution for each

factor can be obtained as follows. What is worth noting is that ωii and ωij are

coupled with branching structure B. ω is marginalized out when solving q1(B) and
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vice versa.

Optimal Density of Pólya-Gamma Variables

q1(ωii) =
N∏
i=1

pPG(ωii|1, f̃(ti))

q1(ωij) =
N∏
i=2

i−1∏
j=1

pPG(ωij|1, g̃(τij)),

(5.42)

where f̃(ti) =
√
E(f 2(ti)) and g̃(τij) =

√
E(g2(τij)) which is computed utilizing

E(C2) = E2(C) + Var(C).

Optimal Marked Poisson Processes

Λ1
µ(t, ωµ) = λ̃∗µσ(−f̃(t))pPG(ωµ|1, f̃(t))e(f̃(t)−f̄(t))/2

Λ1
φ(τ, ωφ) = λ̃∗φσ(−g̃(τ))pPG(ωφ|1, g̃(τ))e(g̃(τ)−ḡ(τ))/2,

(5.43)

where λ̃∗µ = eE(log λ∗µ), f̄(t) = E(f(t)), λ̃∗φ = eE(log λ∗φ) and ḡ(τ) = E(g(τ)).

Optimal Density of Intensity Upper-bounds

q2(λ∗µ) = Gamma(λ∗µ|αµ, βµ)

q2(λ∗φ) = Gamma(λ∗φ|αφ, βφ),
(5.44)

where αµ =
∑N

i=1 E(bii) +
∫∫

Λ1
µ(t, ωµ)dtdωµ, βµ = T , αφ =

∑N
i=1

∑i−1
j=1 E(bij) +

N
∫∫

Λ1
φ(τ, ωφ)dτdωφ, βφ = NTφ and all intractable integrals can be solved by Gaus-

sian quadrature. This provides the required expectation for Eq. 5.43 by E(λ∗) = α/β

and E(log λ∗) = ψ(α)− log β where ψ(·) is the digamma function.
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Optimal Sparse Gaussian Process

q2(fts) = N (fts|m̃ts , Σ̃ts)

q2(gτs) = N (gτs|m̃τs , Σ̃τs),
(5.45)

where Σ̃ts =
[
K−1
tsts

∫
Ãµ(t)ktstk

T
tstdtK

−1
tsts + K−1

tsts

]−1

, m̃ts = Σ̃tsK
−1
tsts

∫
B̃µ(t)ktstdt

with Ãµ(t) =
∑N

i=1 E[ωii]E[bii]δ(t−ti)+
∫∞

0
ωµΛ1

µ(t, ωµ)dωµ and B̃µ(t) = 1
2

∑N
i=1 E[bii]δ(t−

ti) − 1
2

∫∞
0

Λ1
µ(t, ωµ)dωµ; Σ̃τs =

[
K−1
τsτs

∫
Ãφ(τ)kτsτk

T
τsτdτK

−1
τsτs + K−1

τsτs

]−1

, m̃τs =

Σ̃τsK
−1
τsτs

∫
B̃φ(τ)kτsτdτ with Ãφ(τ) =

∑
i,j E[ωij]E[bij]δ(τ−τij)+N

∫∞
0
ωφΛ1

φ(τ, ωφ)dωφ

and B̃φ(τ) = 1
2

∑
i,j E[bij]δ(τ − τij) − N

2

∫∞
0

Λ1
φ(τ, ωφ)dωφ. All intractable integrals

are solved by Gaussian quadrature. Note also the similarity to EM algorithm in

Eq. 5.39.

Optimal Density of Branching Structure

q1(bii = 1) =
µ̃(ti)

µ̃(ti) +
∑i−1

j=1 φ̃(τij)

q1(bij = 1) =
φ̃(τij)

µ̃(ti) +
∑i−1

j=1 φ̃(τij)
,

(5.46)

with µ̃(ti) = λ̃∗µe
E(log σ(f(ti))), φ̃(τij) = λ̃∗φe

E(log σ(g(τij))). The E(log σ(·)) term can be

solved by Gaussian quadrature.

5.6.2 Hyperparameters

Similarly, the hyperparameters θ0 and θ1 can be optimized by performing maximiza-

tion of ELBO over {θ0, θ1} using numerical packages. The optimization of number

and location of inducing points is the same as for the EM algorithm. The final

pseudo code is provided in Alg. 5.3.
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Algorithm 5.3: Mean-field algorithm for SGPHP

Result: µ(t) = λ∗µσ(f(t)), φ(τ) = λ∗φσ(g(τ))
Initialize hyperparameters and variational distributions of B, λ∗µ, λ∗φ, ωii, ωij,

fts , gτs , Πµ, {Πφi}Ni=1;
for do

Update q1 of ωii and ωij by Eq. 5.42;
Update Λ1 of Πµ and {Πφ} by Eq. 5.43;
Update q2 of λ∗µ and λ∗φ by Eq. 5.44;

Update q2 of fts and gτs by Eq. 5.45;
Update q1 of B by Eq. 5.46;
Update hyperparameters.

end

5.6.3 Experimental Results

The performance of the proposed EM and mean-field (MF) algorithms are evaluated

on both synthetic and real-world datasets. Specifically, the proposed algorithms are

compared to the following alternatives.

1. Maximum Likelihood Estimation (MLE): the vanilla Hawkes process

with constant µ and exponential decay triggering kernel;

2. Wiener-Hopf (WH): a nonparametric algorithm for Hawkes process where

µ is constant and φ(τ) is a nonparametric function [11];

3. Majorization Minimization Euler-Lagrange (MMEL): another non-

parametric algorithm for Hawkes process with constant µ and smooth φ(τ),

which similarly utilizes the branching structure and estimates φ(τ) by an

Euler-Lagrange equation [10].

The long short-term memory (LSTM) based neural Hawkes process [53] was also

tried, but it was hard to converge at least on the datasets used in this work. On the

contrary, the proposed algorithms are easier to converge due to the fact that there

are fewer parameters to tune, which constitutes another advantage.
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The following metrics were used to evaluate the performance of the various meth-

ods:

1. TestLL: the log-likelihood of hold-out data using the trained model. This

is a metric describing the model prediction ability. It is used to measure the

performance of synthetic and real data.

2. EstErr : the mean squared error between the estimated µ̂(t), φ̂(τ) and the

ground truth. It is only used for synthetic data.

3. RunTime : the running time of various methods w.r.t. the training dataset

size. It is used for synthetic data.

4. Q-Q plot : the plot visualizes the goodness-of-fit for different models using

time rescaling theorem [47]. It is used for the real data.

Table 5.4: EstErr and TestLL for synthetic and real datasets.

MLE WH MMEL EM MF

Case 1
EstErr(µ̂, µ) 0.236 0.228 0.173 0.137 0.223

EstErr(φ̂, φ) 0.0289 0.0039 0.0053 0.0016 0.0005
TestLL 31.21 33.72 32.78 33.87 33.98

Case 2
EstErr(µ̂, µ) 1.141 0.706 1.135 0.134 0.099

EstErr(φ̂, φ) 0.0076 0.0086 0.0082 0.0011 0.0020
TestLL 27.48 22.97 26.35 33.18 32.58

Collision TestLL 420.41 439.67 470.56 470.34 494.46
Crime TestLL 371.59 400.36 381.42 520.22 375.29

5.6.3.1 Synthetic Data Experiments

In synthetic data experiments, the thinning algorithm [38] was used to generate 100

sets of training data and 10 sets of hold-out data with Tφ = 6 and T = 100 in two

different cases: (1) µ(t) is a constant and (2) µ(t) is changing over time.
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1. µ(t) = 1 and φ(τ) =

0.33 sin τ (0 < τ ≤ π)

0 (π < τ < Tφ)
;

2. µ(t) = sin
(

2π
T
· t
)

+ 1 (0 < t < T ) and φ(τ) = 0.3
(
sin(2π

3
· τ) + 1

)
·

exp(−0.7τ) (0 < τ < Tφ).

Case 1 has constant µ(t) and a half sinusoidal triggering kernel φ(τ). The band-

width of WH is set to 0.3 and there are 10 inducing points on both µ(t) and φ(τ)

for EM and MF. Case 2 is more general, with time-changing µ(t) and a sinusoidal

exponential decay triggering kernel. The bandwidth of WH is 0.1 and there are 10

inducing points on both µ(t) and φ(τ) for EM and MF. The inducing points and hy-

perparameters are optimized for inference. The estimated µ̂(t) and φ̂(τ) are shown

in Fig. 5.3a and 5.3b. From an accuracy perspective, the results in Tab. 5.4 con-

firm that the EM and MF algorithms outperform the alternatives in all cases w.r.t.

TestLL and EstErr (mean for MF). For MLE, the estimated results are far from

the ground truth due to parametric constraints. For WH and MMEL, the constant

limitation on µ(t) still exists even though φ(τ) has been relaxed. On the contrary,

the proposed EM and MF algorithms provide nonparametric µ̂(t) and φ̂(τ) concur-

rently. From an efficiency perspective, both EM and MF algorithms were compared

to the other iterative nonparametric algorithm MMEL with the same number of

iterations. EM and MF’s RunTime scales linearly with the number of observations

in Fig. 5.3c, which establishes their superior efficiency.

5.6.3.2 Real Data Experiments

In the real data section, both the EM and MF algorithms were applied to two

different datasets. The ground truth information is not available for the real world

data, therefore the EstErr cannot be utilized to measure the performance. As a

result, the performance of real data is quantified by the metrics TestLL and Q-Q

plot.

Motor Vehicle Collisions in New York City [39]: I filter out weekday
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(a)

(b)

(c)

Figure 5.3: Synthetic data experimental results. Estimated µ̂(t) and φ̂(τ) for (a)
Case 1 (with shading being one standard deviation for MF) (b): Case 2. Clearly
both EM and MF algorithms capture the structure of underlying rates better than
other alternatives. (c): Running time (seconds) of different iterative nonparametric
algorithms on varying # of observations. Both EM and MF algorithms scale linearly
with # of observations, which is more efficient than MMEL. (GT=Ground Truth)
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records in nearly one month (Sep.18th-Oct.13th 2017). The number of collisions in

each day is about 600. Records in Sep.18th-Oct.6th are used as training data and

Oct.9th-13th are held out as test data.

The performance of EM, MF and other alternatives were compared on this

dataset. The whole observation period T was set to 1440 minutes (24 hours) and

the support of the triggering kernel Tφ was set to 60 minutes. For hyperparameters,

the bandwidth of WH was set to 0.3 and there are 10 inducing points on µ(t) and

φ(τ) for EM and MF with hyperparameters {θ0, θ1} optimized for inference. The

final result is the average of learned µ(t) or φ(τ) of each day.

Crime in Vancouver [52]: I filter out the crime records from 2016-06-01 to

2016-08-31 as training data and 2016-09-01 to 2016-11-30 as test data, add a small

time interval to separate all the simultaneous records and delete some records with

empty values.

The whole observation period T was set to 92 days and the support of φ(τ) was

set to 6 days. For hyperparameters, the bandwidth of WH was set to 0.5 and there

are still 10 inducing points on µ(t) and φ(τ) for EM and MF with hyperparameters

{θ0, θ1} optimized for inference.

The performance of the proposed algorithms was compared to the alternatives.

For each inference algorithm, its predictive performance was evaluated using TestLL.

The TestLL of EM, MF and other alternatives are shown in Tab. 5.4. The proposed

EM and MF algorithms are consistently superior over the alternatives whose baseline

intensity or triggering kernel is too restricted to capture the dynamics. To further

measure performance, the Q-Q plot was generated. A sequence of timestamps in

the hold-out data was transformed by the fitted model to a set of independent

uniform random variables on the interval (0, 1). The result is shown in Fig. 5.4. All

experimental results establish that the proposed algorithms can not only describe

µ(t) and φ(τ) in a completely flexible manner leading to better goodness-of-fit, but

also with superior efficiency.
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(a) (b)

Figure 5.4: Q-Q plot of EM, MF and other alternative inference algorithms for the
real datasets.

5.7 Discussion

In this section, the setting of hyperparameters and the advantages and disadvantages

of the proposed algorithms are discussed. As in the previous chapters, the hyper-

parameters θ0 and θ1 have a significant effect on the estimation. In order to tune

them carefully, the hyperparameters are updated regularly in the Gibbs sampler,

EM iterations or mean-field iterations from its posterior distribution, to maximize

the surrogate function or to maximize the ELBO.

The advantage of the Gibbs sampler is that the derivation is relatively easy

compared with EM and MF and the estimated posterior is accurate, however the

disadvantage is that the Gibbs sampler is relatively slow because the latent Poisson

process has to be sampled, which is a time-consuming procedure. On the contrary,

the EM algorithm is the most efficient and can provide the exact MAP estimate, but

the disadvantage is that it can only provide a point estimation and not a posterior

distribution representing the uncertainty. The MF algorithm is intermediate, achiev-

ing good efficiency and also providing uncertainty estimation, but the drawback is

that the estimation is an approximation.
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5.8 Summary

In this chapter, efficient Gibbs sampling, EM and MF variational inference algo-

rithms are proposed for the sigmoid GP Hawkes process. By augmenting the branch-

ing structure, Pólya-Gamma random variables and latent marked Poisson processes,

the inference can be performed efficiently in a conjugate way. Furthermore, by in-

troducing a sparse GP approximation, the proposed algorithms scale linearly with

the number of observations. The experimental results on synthetic and real datasets

confirm that the accuracy and efficiency of the proposed algorithms are superior to

state-of-the-art alternatives.



Chapter 6

Fast Multi-resolution

Segmentation for Nonstationary

Hawkes Process∗

As discussed in Sec. 2.1, the conditional intensity of the Hawkes process is unchanged

over timeshifting because µ is a constant and φ(·) only depends on τ = t − ti and

not on t, which provides stationarity. The assumption of stationarity leads to easy

inference, but it is inconsistent and not very useful with real applications. Applying

the vanilla Hawkes process directly to the nonstationary data is inappropriate. On

the other hand, nonstationarity itself may be an important feature. Discovering the

underlying nonstationarity will provide more valuable temporal information that

stationary models cannot provide.

One of the common methods of analyzing nonstationary time series is to use

segmentation. This type of problem is also called a change-point problem and is well

studied [19]. Given a nonstationary point process data, a segmentation algorithm

will divide the whole observation period into several non-overlapping contiguous

∗Portions of this chapter have been deposited in arXiv: F. Zhou, Z. Li, X. Fan, Y. Wang, A.
Sowmya, F. Chen, Fast Multi-resolution Segmentation for Nonstationary Hawkes Process Using
Cumulants. arXiv preprint arXiv:1906.02438. 6 Jun 2019.
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segments such that each segment is more approximately stationary than the original

data and can be assumed to be stationary.

The goal of this chapter is to propose a multi-resolution segmentation algorithm

for the nonstationary Hawkes process which can reveal the optimal partition struc-

ture at different resolutions. Multi-resolution segmentation is meaningful in real

data applications. For example, when the traffic data is analysed later in Sec. 6.4,

the lower resolution partition (e.g. two segments) corresponds to a “coarser” distinc-

tion such as between day and night, while the higher resolution partition (e.g. four or

six segments) corresponds to a “finer” distinction such as between alternating busy

and non-busy hours. This will help provide more insights into the nonstationary

structure of point process data.

Intuitively, the most appropriate segmentation may be found using the estimated

baseline intensities and triggering kernels at different times. However, the estimation

of µ and φ(·) is time consuming. For computational efficiency, µ and φ(·) are not

estimated directly, instead cumulants are used, which can be estimated quickly.

Consequently, segmentation can be fast to implement. Details are discussed in Sec.

6.1.

After segmentation, the baseline intensity and triggering kernel are learned piece-

wise on each segment. Specifically, the Wiener-Hopf method [11] is used. Con-

sequently, the learned triggering kernel is nonparametric. Overall, this defines a

nonstationary and nonparametric Hawkes process model.

The performance of the segmentation algorithm depends on the choice of hyper-

parameters, which is investigated in Sec. 6.2.4. To ease the choice of hyperparam-

eters, the idea of GP-MISD (see Chapter 3) is used to make the algorithm more

robust. Overall, this chapter makes the following contributions:

1. A multi-resolution segmentation (MRS) algorithm is proposed that can par-

tition the nonstationary Hawkes process into a desired output resolution.

2. The MRS algorithm does not directly depend on the estimation of µ and φ(·)
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which is time consuming, but instead on the estimation of cumulants of the Hawkes

process which are fast to compute. Consequently, the MRS algorithm is fast, with

linear time computation complexity.

3. The idea of GP-MISD is incorporated into the MRS algorithm in order to

ease the choice of the hyperparameter.

In the following, the Näıve MRS algorithm is proposed in Sec. 6.1. In Sec.

6.2, synthetic data experiments are performed for constant and non-constant base-

line intensity cases; also the complexity and the influence of hyperparameters are

analysed. In Sec. 6.3, a novel GP based MRS algorithm is proposed to solve the

problem of choosing hyperparameters. The real traffic data is analysed in Sec. 6.4.

The approach is discussed in Sec 6.5, and remarks are provided in Sec. 6.6.

6.1 Multi-resolution Segmentation

Assume that there is a set of observations {ti}Ni=1 on [0, T ] from a nonstationary

Hawkes process, where the baseline intensity µ is constant (the case with noncon-

stant µ(t) is later shown in Sec. 6.2.2) but the triggering kernel φ(τ) is changing

over time t. Given M , the basic idea of MRS is to uniformly divide the observa-

tion period [0, T ] into M sectors at the highest resolution, e.g. s1, s2, ..., sM , where

{sj}Mj=1 are sectors and |sj| is the width of the sector. In each sj, the point process

is assumed to be stationary.

Intuitively, the triggering kernel φ(τ) can be estimated in each sector, and adja-

cent pairs compared directly to find the maximum possible partitioning positions.

However, the estimation of φ(τ) is time consuming, whether it is performed in para-

metric way (MLE) or nonparametric way (MISD algorithm, Wiener-Hopf method),

and estimating on all sectors is even more time consuming. In order to increase

computational efficiency, φ(τ) is not estimated in each sector directly, instead the

second order statistics gj(τ) which can be estimated fast are used. The second or-
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der statistics gj(τ) in each sector can be empirically estimated using the empirical

version of Eq. 2.7.

The reason φ(τ) in each sector can be replaced with gj(τ) is that there is a one-

to-one mapping between them, so the difference between two adjacent gj(τ) stands

for the nonstationarity of φ(τ). The difference of two adjacent gj(τ) is written as a

normalized mean squared error (NMSE):

NMSE = Eτ
(

(
gj(τ)∫
gj(τ)dτ

− gj+1(τ)∫
gj+1(τ)dτ

)2

)
. (6.1)

In most of cases, gj(τ) is an even function for 1-variate Hawkes process when τ →

±∞ gj(τ) → 0. If gj(τ) is expressed as a histogram function gj(τ) =
∑K

k=1(gkj δkh)

where δkh(τ) = 1 if (k− 1)h ≤ τ < kh and 0 otherwise, h is the bin-width and gj(τ)

is 0 beyond the support of Kh, gj(τ) can be written as a vector gj = [gkj ]Kk=1 (see

Fig. 6.1). Eq. 6.1 also can be converted to a discrete version:

NMSE =

∑K
k=1

(
(

gkj

2h
∑K
k=1 g

k
j

− gkj+1

2h
∑K
k=1 g

k
j+1

)2

)
K

. (6.2)

Then a desired number of segments (the desired output resolution) R is set.

Given NMSE on all the candidate cutting positions, the largest R− 1 cutting posi-

tions are picked, which produce the segmentation. Alternatively, a threshold corre-

sponding to R can be used: if the NMSE between gj(τ) and gj+1(τ) is smaller than

the threshold, the two adjacent sectors are considered to be approximately station-

ary and are not partitioned; otherwise the partition occurs at the current candidate

position. The MRS scheme is shown in Fig. 6.2.

By adjusting the desired output resolution R, the multi-resolution segmentation

algorithm will output segments at different resolutions. For example, when R = M

the partitioner will output the highest resolution (cutting at all candidate positions),

and as R becomes smaller the output resolution will be lower (fewer segments will
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be created) until there is no partition at all.

After performing the segmentation, the second order statistics g(τ) on each seg-

ment can be used to nonparametrically solve the triggering kernel φ(τ) on each

segment. As proved elsewhere [11], φ(τ) and g(τ) satisfy the Wiener-Hopf equation

(Eq. 2.16). In most cases, this equation cannot be solved analytically, but there

exist many methods [54, 55] to solve it numerically. A common one is the Nystrom

method [23]. Its basic idea is to use the Gaussian quadrature method to numerically

approximate the convolution in Eq. 2.16, consequently, Eq. 2.16 is converted to a

standard linear system that can be easily solved by inversion. It is worth mentioning

that Eq. 2.16 only gives out φ(τ), and to estimate µ, the first order cumulant Eq. 2.4

has to be used.

Figure 6.1: g(τ) is expressed as a histogram. Red dashed lines correspond to two
extreme cases.

Figure 6.2: Multi-resolution segmentation scheme, for simplicity µ is assumed to be
constant and that there are only 3 different φ(τ)’s distributed on [0, T ].

The pseudocode for the MRS algorithm and the estimation of µ and φ(τ) is
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formally presented in Alg. 6.1.

Algorithm 6.1: MRS Algorithm and estimation of µ’s and φ(τ)’s

Input: {ti}Ni=1, T , R, M , K
Output: partition positions, µ and φ(τ) on each segment
Function

Uniformly divide [0, T ] into sectors {sj}Mj=1;

Estimate the second order statistics gj = [gkj ]Kk=1 on each sj using Eq. 2.7;

Compute the NMSE between two adjacent gj using Eq. 6.2;
Set a desired output resolution R to obtain the partition positions;
After segmentation, estimate the second order statistics g(τ) on each
segment using Eq. 2.7;

Estimate µ and φ(τ) on each segment using Eq. 2.16 and Eq. 2.4;
Return partition positions, µ’s and φ(τ)’s.

end

6.2 Synthetic Data Experiments

6.2.1 Constant Baseline Intensity

In this part, the thinning algorithm [38] is used to independently generate 40 sets of

observations {{ti}Nli=1}40
l=1 on [0, 1000] from a nonstationary Hawkes process, where

Nl is the number of points on l-th observation, µ is assumed to be constant 1, there

are 3 different triggering kernels φ1(τ) = 1 · exp(−2τ), φ2(τ) = 2 · exp(−3τ) and

φ3(τ) = 3 · exp(−4τ) distributing on [0, 200], [200, 600] and [600, 1000] respectively

(see Fig. 6.2).

The goal is to find the underlying partition structure and estimate µ and φ(τ)’s

in a nonparametric way. The highest resolution is set to be M = 10 (|sj| = 100),

gj(τ) is expressed as a histogram function gj(τ) =
∑K

k=1(gkj δkh) where h = 0.75 and

K = 8.

It is worth mentioning that the difference between two adjacent estimated gj(τ)

and gj+1(τ) comes from two sources: the first is the nonstationarity of φ(τ) which
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is desired, and the second is the randomness of gj(τ) induced by the estimation

variance. As the highest resolution M becomes higher (|sj| becomes smaller), there

will be fewer observation points in each sector and, consequently, the variance of

estimated gj(τ) will be larger and the difference coming from the second source will

be larger, which will lead to a misidentified segmentation. This problem is due to the

influence of the hyperparameter M which will be discussed in Sec. 6.2.4. For now,

the estimated gj(τ) is averaged over 40 sets of independent observations to eliminate

the variance as far as possible. Similarly, as K becomes larger (h becomes smaller),

there will be fewer observation points in each bin and, consequently, the estimation

variance of gj(τ) will be larger (see Fig. 6.8) and the difference from the second

source will also be larger, which will lead to a misidentified segmentation. This

problem is due to the influence of the hyperparameter K, which will be discussed

in Sec. 6.2.4. For now, K = 8, which was chosen empirically.

In Tab. 6.1, the multi-resolution segmentation results on the synthetically gener-

ated dataset are shown as R becomes larger from 1 to the highest resolution M = 10.

As discussed, when R is 1, there is no segmentation at all; as R becomes larger the

output resolution increases, and when R is 3, the partition positions totally match

the ground truth; when R = 10 the algorithm segments at every candidate position

(the highest resolution). To quantify the difference caused by estimation variance,

the proportion of the minimum threshold (corresponding to R) over the maximum

NMSE (see Fig. 6.6) is shown in Tab. 6.1. Clearly the difference between two adja-

cent estimated gj(τ) induced by estimation variance is below 50% (the last correct

segmentation is “600” which corresponds to 50.75%), which means that the MRS

algorithm is robust enough to produce the correct segmentation.

Setting R = 3, the correct segmentation [0, 200], [200, 600], [600, 1000] is ob-

tained. The next step is to infer µ and φ(τ) on each segment. The second order

statistics g(τ) are empirically estimated on each segment and the Wiener-Hopf equa-

tion (Eq. 2.16) solved. The µ̂’s estimated in three segments are averaged to obtain

the final µ̂. The final estimated µ̂ = 0.89 and the estimated φ̂(τ)’s are shown in
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Table 6.1: Multi-resolution segmentation results (µ is constant), the “new position”
is the newly added partition position

R 1 2 3 4 5
New Position ∅ 200 600 100 800
Min(Threshold)

Max(NMSE)
100% 82.61% 50.75% 47.12% 44.47%

R 6 7 8 9 10
New Position 500 900 400 700 300
Min(Threshold)

Max(NMSE)
34.65% 33.83% 22.19% 6.72% 0%

Fig. 6.3. It can be seen that the estimation results match the ground truth.

Figure 6.3: µ is constant: the estimated φ̂1(τ), φ̂2(τ) and φ̂3(τ) distributed on
[0, 200], [200, 600] and [600, 1000]. The ground truth are 1 · exp(−2τ), 2 · exp(−3τ)
and 3 · exp(−4τ), respectively.

6.2.2 Nonconstant Baseline Intensity

The µ was constant in Sec. 6.2.1. In this section, µ is relaxed to be nonconstant

where µ is 2, 1.5 and 1 on [0, 200], [200, 600] and [600, 1000] respectively. The

thinning algorithm is used to independently generate 40 sets of observations on

[0, 1000], with triggering kernels φ1(τ) = 1 · exp(−2τ), φ2(τ) = 2 · exp(−4τ) and

φ3(τ) = 3 · exp(−4τ) distributing on [0, 200], [200, 600] and [600, 1000], respectively.

The multi-resolution segmentation results are shown in Tab. 6.2. The result is

similar to that in Tab. 6.1: the algorithm does not cut when R = 1 and has only

one cut at 600 when R = 2; it provides the ground truth partition when R = 3
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and the highest resolution when R = 10. From the proportions in the third and

sixth rows, clearly the difference induced by estimation variance is smaller than

Tab. 6.1: it is below 11% (the last correct cutting is “200” which corresponds to

11.41%). Actually, this is a direct consequence of more observation points because

the baseline intensity is higher in this case.

Table 6.2: Multi-resolution segmentation results (µ is nonconstant), the “new posi-
tion” is the newly added partition position

R 1 2 3 4 5
New Position ∅ 600 200 500 900
Min(Threshold)

Max(NMSE)
100% 88.45% 11.41% 8.05% 7.15%

R 6 7 8 9 10
New Position 400 300 700 800 100
Min(Threshold)

Max(NMSE)
6.88% 5.17% 2.24% 1.25% 0%

As before, µ and φ(τ) are inferred on each segment after obtaining the correct

segmentation [0, 200], [200, 600] and [600, 1000]. The estimated µ̂1 = 2.05, µ̂2 = 1.64,

µ̂3 = 1.01 and φ̂(τ)’s are shown in Fig. 6.4. It can be seen that the estimation result

matches with the ground truth.

Figure 6.4: µ is nonconstant: the estimated φ̂1(τ), φ̂2(τ) and φ̂3(τ) distributing on
[0, 200], [200, 600] and [600, 1000]. The ground truth are 1 · exp(−2τ), 2 · exp(−4τ)
and 3 · exp(−4τ), respectively.
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6.2.3 Computational Complexity

There are mainly two steps involved in the estimation procedure: the first step

is to estimate the optimal segmentation and the second step is to estimate µ and

φ(τ) on each segment. In this chapter, the reference to the MRS algorithm is

only to the first segmentation searching step. The computational complexity of

the MRS algorithm is analysed now. The second step is the Wiener-Hopf equation

method whose complexity can be found elsewhere [11]. It will be shown that the

MRS algorithm has linear time computational complexity, which means that it is

practical in real applications.

It can be seen later that the complexity of MRS mainly depends on two parame-

ters: the highest resolution M and the total number of points on all sets of indepen-

dent observations multiplying the number of bins on gj(τ): NK where N =
∑

lNl.

The complexity of estimation of second order statistics gj(τ) is approximately

O(K), so the complexity of estimation of gj(τ) on each sector is approximately

O(njK) where nj is the number of points in sj, so the complexity of all gj(τ) on

l-th observation is O(NlK), consequently, the complexity of all gj(τ) on all sets of

independent observations is O(NK). The complexity of averaging the estimated

gj(τ) over independent observations on M sectors is O(M) and the complexity

of NMSE between two adjacent gj(τ) over M sectors is O(M − 1). So the final

complexity of MRS is O(NK +M).

For a fixed M e.g. M = 10, the optimal segmentations for different sizes of

NK are searched and the experimental results are shown in Fig. 6.5 left. It can be

seen that the computational time is linear with NK. For fixed NK e.g. NK =

31, 547×8, the optimal segmentations for different sizes of M are then searched and

the experiment results are shown on the right. The computational time is linear

with the highest resolution M .

Also MRS is fast because it only takes about 10 seconds for about 120,000

observation points whenK = 8 andM = 10 on a normal desktop (CPU: i7-6700 with
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8GB RAM), which proves its practicability in real problems. The computational

time for estimation of φ(τ) and g(τ) were also compared: given 1,896 observation

points, the computational time of g(τ) is only 0.5 second, while that of φ(τ) is 38.4

seconds, which shows that replacing φ(τ) with g(τ) saves time.

Figure 6.5: Computational time of MRS w.r.t. (left) NK for M = 10 and (right)
w.r.t. M for NK = 31, 547× 8.

6.2.4 Influence of Hyperparameters

As stated in Sec. 6.2.3, the difference between two adjacent estimated gj(τ) and

gj+1(τ) is made up of two sources: the first source is the difference between E(gj(τ))

and E(gj+1(τ)) which is the nonstationarity of φ(τ) that is desired, and the second

source is the estimation variance of gj(τ) induced by the choice of hyperparameters.

Given a sufficient number of observation points, there are two hyperparameters

affecting the performance of MRS: M and K. In this section, the same experiment

as in Sec. 6.3.1 is repeated for different values of M and K to observe the influence

of each hyperparameter.

Hyperparameter M Intuitively, the highest resolution M should not be too

small or too large. If too small, there are very candidate partition positions, and

consequently, the segmentation result from MRS will not be good. If too large,

there will be fewer points in each sector sj given finite observation points on [0, T ],
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which means that the estimated gj(τ) is far from the E(gj(τ)), and consequently

the segmentation result from MRS will not be good either.

Experiments were performed for fixed K e.g. K = 8, and increasing M from

3 to 20. The results with R = 3 are shown in Tab. 6.3 and the corresponding

NMSE results are shown in Fig. 6.6. As can be seen when M is in the range [10, 16]

the segmentation result from MRS is close to the ground truth, and when M is

larger than 20 the first source difference has been flooded by the second source (the

estimation variance) and, consequently, the partition positions are misidentified.

Table 6.3: Segmentation results w.r.t. M

Highest Resolution M 3 8 10
Partition Positions 333.33,666.66 125,250 200,600

Highest Resolution M 12 16 20
Partition Positions 166.67,666.67 187.5,687.5 150,350

Hyperparameter K As will be found, given an appropriate highest resolution

M , the performance of MRS is also affected by the hyperparameter K. The reason

behind this phenomenon is that as K becomes larger, there are more bins on gj(τ)

and the estimated gj = [gkj ]Kk=1 is overfitted. To demonstrate this, experiments were

performed with the highest resolution M = 10, and K = 10, 40 and 100. The

estimated g1 when K = 10, 40 and 100 is shown in Fig. 6.8 (only the positive half

is shown because it is an even function). It is clear that the result when K = 100 is

overfitted, since there are many spikes up and down.

The more bins used, the larger the estimation variance of gj(τ), and conse-

quently the second source difference is even larger than the first source, leading to

misidentified segmentation. To show this, the segmentation and NMSE results when

K = 10, 20, 30 and 40 with R = 3 are shown in Tab. 6.4 and Fig. 6.7. As can be

seen, when K ≥ 30 the segmentation obtained from MRS no longer matches the

ground truth.
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Figure 6.6: For K = 8, NMSE of MRS w.r.t. M . The threshold corresponds to
R = 3.

Table 6.4: Segmentation results w.r.t. K

K 10 20 30 40
Partition Positions 200,600 200,600 100,200 100,200
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Figure 6.7: For M = 10, NMSE of MRS w.r.t. K. The threshold corresponds to
R = 3.

6.3 Choice of Hyperparameters

To obtain the optimal hyperparameters M and K, intuitively, experiments can be

performed on different values of M and K to check which one is better. Nevertheless,

for a more robust model, in this section, an idea similar to GP-MISD (see Chapter

3) is used to propose a refined MRS algorithm, namely the Gaussian process based

MRS (GP-MRS), so that an optimal value of K need not be chosen. As shown later,

a large K can be arbitrarily set, as GP-MRS can prevent it from overfitting, and

consequently the new algorithm is more robust.

The key idea of GP-MRS is to use a standard Gaussian process regression to

smooth the vector gj = [gkj ]Kk=1 in each sector. The posterior mean function gj(τ)

obtained from Gaussian process regression is used to replace the directly estimated

gj in NMSE (Eq. 6.2). By using GP-MRS the difference between adjacent gj(τ)

induced by the overfitting of gj(τ) can be effectively eliminated when K is large
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(compare Fig. 6.7 and Fig. 6.9).

It is worth noting that the same Gaussian process based idea cannot be applied

to optimize the value of M , because too large an M will lead to a sparse problem in

each sector where the Gaussian process regression cannot provide a true posterior

mean function. To obtain the optimal hyperparameter M , an empirical formula

may be used:

M ≈ N
250L

, (6.3)

where L is the number of independent observations.

6.3.1 Synthetic Data Experiment on GP-MRS

The GP-MRS algorithm was applied to the same synthetic dataset used in Sec. 6.2.4.

The GP hyperparameters were tuned carefully. The estimated g1(τ) when K =

10, 40 and 100 is shown in Fig. 6.8 (only the positive half is shown). It is clear that

the gj(τ) from GP-MRS is stable, no matter what K is. The segmentation results

and NMSE with R = 3 are shown in Tab. 6.5 and Fig. 6.9. It can be seen that

the segmentation produced by and NMSE of GP-MRS are both stable, no matter

the number of bins on gj(τ). It can produce the correct segmentation even in cases

where MRS does not work.

Figure 6.8: For M = 10, estimated g1(τ) from MRS and GP-MRS when K = 10, 40
and 100.
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Table 6.5: Segmentation results of GP-MRS w.r.t. K

K 10 20 30
Partition Positions 200,600 200,600 200,600

K 40 100 200
Partition Positions 200,600 200,600 200,600

Figure 6.9: For M = 10, NMSE of GP-MRS w.r.t. K. The threshold corresponds
to R = 3.
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6.3.2 Computational Complexity of GP-MRS

In a standard GP implementation, the computationa complexity is O(K3) when

calculating K training points (gj = [gkj ]Kk=1). Theoretically, this is due to the need

to invert an K×K covariance matrix. The final complexity of GP-MRS is approxi-

mately O(NK +MK3). Unavoidably, the introduction of GP regression into MRS

make the algorithm slower. The same experiments as in Sec. 6.2.3 were performed.

For N = 120, 000 and M = 10, the computational time of GP-MRS when K = 40

is 48.64 seconds on a normal desktop. This is still acceptable when K is not too

large.

6.4 Real Data Experiment

The GP-MRS algorithm was applied to a real world dataset of vehicle collisions to

discover the underlying time-varying characteristics. As ground truth information

is unavailable for the real world data, two metrics were used to measure the perfor-

mance: 1) the physical meaning of segmentation to check whether it is consistent

with real traffic conditions, and 2) the log-likelihood of test data to check whether

the learned result fits the test data better.

6.4.1 Vehicle Collisions in New York City

In daily transportation, the stationarity of Hawkes process is not satisfied for vehicle

collision records. For example, at night the traffic condition is not so busy that the

triggering effect is lower than in the daytime; or at peak time the traffic condition is

very busy so that the triggering effect must be higher than that in the normal time.

As can be seen later, the hierarchical time-varying characteristics of triggering kernel

and baseline intensity over 24 hours can be discovered using the MRS algorithm.
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Weekdays I filter out the collision records in New York City [39] on all weekdays

from May 1st 2017 to June 30th 2017. Assuming that the observations every day are

independent of each other, there are 45 sets of independent observations. Totally,

there are 137,578 observation points. GP-MRS is used for segmentation, which is

fast enough in this case. The whole observation period T is set to 1440 minutes

(24 hours a day). The support of φ(τ) is set to 8 minutes. The hyperparameters of

GP-MRS are tuned carefully; K is arbitrarily set to 20 and M is set to 12 by using

Eq. 6.3, which means that the size of the sector is 120 minutes (2 hours).

Segmentation searching was performed. Because the period of one day can be

considered as a cycle, segmentation can be seen as cutting on a circle. In previous

experiments, R corresponds toR−1 cutting positions, whereas hereR corresponds to

R cutting positions. When the desired output resolution is R = 2, the computational

time of GP-MRS is about 10 seconds and the cutting positions are at 2:00 and 8:00.

The segmentation results are shown in Fig. 6.10 left and can be interpreted as busy

time and non-busy time.

After segmentation, µ and φ(τ) are estimated on each segment. The estimated

µ’s, where µ is assumed to be nonconstant, are µ1 = 0.317 and µ2 = 0.127, and

the estimated φ(τ)’s are shown in Fig. 6.11. Both µ1 and φ1(τ) are larger than

µ2 and φ2(τ), which is consistent with common sense because the traffic condi-

tion is more crowded in the busy time, and consequently the baseline intensity and

triggering effect of vehicle collisions are both increased. Additionally, the nonpara-

metrically learned triggering kernel is not strictly monotonically decreasing: there

is a small bump around 5 minutes after the initial collision, which is different from

the parametric result (shown in Fig. 6.15) and this shows the superior flexibility of

nonparametric estimation.

To show the multi-resolution property of GP-MRS, the desired output resolu-

tion R is increased to 4 and a finer segmentation on 24 hours is obtained. The

computational time of GP-MRS in this case is also about 10 seconds and the cut-
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Figure 6.10: Weekdays: 24-hour segmentation result of Vehicle Collisions in New
York City, 2 segments on the left and 4 segments on the right.

Figure 6.11: Weekdays: Estimated φ(τ) of Vehicle Collisions in New York City for
busy time and non-busy time.
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ting positions are at 2:00, 6:00, 8:00 and 20:00. The segmentation results are shown

in Fig. 6.10 right. The segmentations can be interpreted as normal time, busy time

and non-busy time. Late night is between 2:00 and 6:00 which are non-busy hours;

the after-work entertainment hours (from 20:00 to 2:00) together with morning com-

mute hours (from 6:00 to 8:00) are the normal time; daytime (from 8:00 to 20:00)

is the busy time. The estimated µ’s are µ1 = 0.32, µ2 = 0.12, µ3 = 0.29 and

µ4 = 0.59. The estimated φ(τ)’s are shown in Fig. 6.12. Both the baseline intensity

and triggering kernel of the busy time are larger than those of normal time and of

non-busy time. The baseline intensity and triggering kernel of the two normal times

are similar to each other.

Figure 6.12: Weekdays: Estimated φ(τ) of Vehicle Collisions in New York City for
normal time, busy time and non-busy time.

Weekends The collision records on all weekends from February 1st 2017 to August

31th 2017 were filtered out. Totally, there are 122,782 observation points. All the

settings of the experiment are the same as the weekdays experiment. As before,

segmentation search is performed. When the desired output resolution is R = 2,
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the cutting positions are at 2:00 and 8:00 which are the same as for weekdays.

The segmentation is shown in Fig. 6.13 left. When R is 3, a finer segmentation is

obtained, with the cutting positions at 2:00, 8:00 and 12:00. The segmentation is

shown in Fig. 6.13 right. The segmentation can be interpreted as normal time, busy

time and non-busy time. The difference between weekends and weekdays is obvious:

people wake up late at weekends so the non-busy time is from 2:00 to 8:00; from

8:00 to 12:00, people start to go out of their homes for shopping or other activities

so it becomes busy; from 12:00 to 2:00 at weekends, it is normal time which is not

as busy as the weekdays.

The estimated φ(τ)’s are shown in Fig. 6.14 (only the 3-segment result is shown);

the estimated µ’s are µ1 = 0.33, µ2 = 0.14 and µ3 = 0.47. The baseline intensity

and triggering kernel of busy time are larger than those of normal time and also of

non-busy time. Also, µ and φ(τ) of busy time at weekends are smaller than those of

weekdays, which is consistent with common sense because there are fewer vehicles

on the road at weekends.

Figure 6.13: Weekends: 24-hour segmentation result of Vehicle Collisions in New
York City, 2 segments on the left and 3 segments on the right.

6.4.2 Comparison with Classical Models

To show the superiority of the proposed model, the learned results of stationary

parametric Hawkes process (vanilla version), stationary nonparametric Hawkes pro-
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Figure 6.14: Weekends: Estimated φ(τ) of Vehicle Collisions in New York City for
normal time, busy time and non-busy time.

cess (nonparametric version) and nonstationary nonparametric Hawkes process (pro-

posed version) are compared. The learned baseline intensity and triggering kernel of

the first two models are shown below. Also, the negative log-likelihood of the three

models on the test dataset are compared. As can be seen, the proposed version fits

the test data better.

For the stationary parametric Hawkes process, assume that the baseline intensity

µ is constant and the triggering kernel is an exponential decay function: φ(τ) =

α · exp(−βτ). The goal of inference is to infer parameters µ, α and β. Inference can

be performed by using MLE. The learned µ = 0.22 and φ(τ) are shown in Fig. 6.15.

For the stationary nonparametric Hawkes process, assume that the baseline in-

tensity µ is constant and there is only one kind of triggering kernel which is in

nonparametric form. The goal of inference is to infer µ and the triggering kernel

φ(τ). Inference can be performed by using the Wiener-Hopf equation method. The

learned µ = 0.26 and φ(τ) are shown in Fig. 6.15.

The negative log-likelihood (−logL) of the three models on test data (week-

days) are compared. The results are also shown in Fig. 6.15. The proposed model,

namely the nonstationary nonparametric version with 4 segments, fits the data best.

Followed by the stationary nonparametric version and the stationary parametric ver-

sion.
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Figure 6.15: Estimated φ(τ) of Vehicle Collisions in New York City of (left) sta-
tionary parametric Hawkes process and (middle) stationary nonparametric Hawkes
process and (right) −logL of stationary parametric version, stationary nonparamet-
ric version and nonstationary nonparametric version.

6.5 Discussion

In this section, the setting of hyperparameters and the advantages and disadvan-

tages of the proposed algorithm are discussed. The hyperparameters that have a

significant effect on the estimation are K and M . As stated in Sec 6.2.4, an exces-

sively large or small value of K or M hampers correct estimation. In this work, the

hyperparameters K and M are chosen based on grid search. A better method to

choose hyperparameter values would be useful in the future.

The advantage of the proposed MRS and GP-MRS algorithm is that it can pro-

vide a hierarchical insight into the temporal dynamics of the nonstationary Hawkes

process, which is more general than the classical stationary Hawkes process, and is

scalable to large datasets. The disadvantage is that, based on the current version,

the hyperparameters have a large influence on the segmentation result, which can

be further improved in the future.
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6.6 Remarks

The vanilla Hawkes process assumes stationarity which introduces computation con-

venience to inference but limits model flexibility. In this chapter, a fast multi-

resolution segmentation algorithm was proposed to partition the time axis into

many segments, and the number of segments depends on the desired output res-

olution which depends on how fine grained the operator wants the segmentation

to be. In this way, the underlying time-varying characteristics of a nonstationary

Hawkes process can be discovered. Because second order statistics are utilized, the

segmentation algorithm is fast. After segmentation, the Wiener-Hopf method is

applied to each segment to estimate the baseline intensity and nonparametric trig-

gering kernel. Overall, the output is a nonstationary and nonparametric Hawkes

process. To ease the choice of hyperparameter K, GP-MRS is proposed at the cost

of lower computational efficiency, which is still acceptable. The experimental results

show the superiority of the proposed model.



Chapter 7

Conclusions and Future Work

In this thesis, a set of novel nonparametric (frequentist or Bayesian) and nonsta-

tionary Hawkes process models were developed; concurrently, the corresponding

inference algorithms were proposed. The proposed models generalize the classical

Hawkes process with fewer constraints in terms of parametric form and stationar-

ity. In this chapter, the main contributions are summarized and potential future

research directions are discussed.

In Chapter 1, the background of Hawkes process and the main contributions are

introduced. Some preliminary knowledge about the following chapters are provided

in Chapter 2. A frequentist nonparametric algorithm: Refined MISD algorithm

is proposed in Chapter 3. Two Bayesian nonparametric Hawkes process models

are proposed in Chapter 4 and 5 with quadratic link function in Chapter 4 and

sigmoid link function in Chapter 5. A fast multi-resolution segmentation algorithm

is provided for nonstationary Hawkes process in Chapter 6.

7.1 Thesis Summary and Contributions

In general, the thesis demonstrates that the classical Hawkes process suffers from

some constraints when applied to real applications, and the focus in this thesis has
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been on the parametric and stationary constraints. In attempting to generalize the

Hawkes process in these two directions, several advances have been made, which are

now summarized.

Refined MISD algorithm: The MISD algorithm is a classical frequentist nonpara-

metric EM algorithm for Hawkes process. One issue with MISD is that the number

of bins have to be chosen, making it a hyperparameter affecting the estimated re-

sult severely. To avoid tedious model selection e.g. cross validation, a refined MISD

algorithm was proposed in Chapter 3. A GP regression step was innovatively embed-

ded into the EM iteration, and consequently the number of bins can be arbitrarily

set to a large number without the danger of overfitting. The proposed GP-MISD

algorithm is a contribution to the frequentist nonparametric inference for Hawkes

process and is also relevant to the fast segmentation algorithm for nonstationary

Hawkes process that is discussed in Chapter 6.

Gaussian Process Modulated Hawkes Process (Quadratic Link Function): To

model the baseline intensity and triggering kernel of the Hawkes process using non-

parametric functions, the Bayesian nonparametric framework with GP prior is a

good choice. In order to guarantee the non-negativity of rates, the GP function

has to be passed through a link function. The issues with the GP based Bayesian

nonparametric model are

1. the coupling of the baseline intensity and triggering kernel in the likelihood of

the Hawkes process,

2. the intractable integrals in the numerator and denominator of Bayes rule, and

3. the likelihood being non-conjugate to the GP prior and the posterior being

non-Gaussian, due to the existence of link function.

In Chapter 4, the link function was chosen to be a quadratic transformation. The

branching structure of the Hawkes process was augmented to decouple the baseline
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intensity and triggering kernel. Although the posterior is still non-Gaussian, vari-

ational Gaussian approximation was utilized so that a Gaussian distribution could

approximate the true posterior. As a result, the variational Gaussian approximation

was embedded into an EM framework to propose the EMV algorithm. The advan-

tage of the EMV algorithm is that the ELBO has an analytical solution. Moreover,

the dimension of the searching space was reduced and the closed-form matrix deriva-

tive derived to accelerate the inference.

Gaussian Process Modulated Hawkes Process (Sigmoid Link Function): To fur-

ther circumvent the non-conjugacy problem, in Chapter 5 the link function was

chosen to be the scaled sigmoid function. After augmentation of the branching

structure, Pólya-Gamma random variables and latent marked Poisson processes,

the likelihood of Hawkes process was converted to two independent factors that are

conjugate to the GP priors. Due to the conjugacy, inference can be performed more

efficiently.

Depending on the augmented likelihood or joint distribution, a Gibbs sampling

algorithm was developed to perform MCMC inference, an EM algorithm to obtain

the MAP estimate and a mean-field variational algorithm to perform variational in-

ference. To circumvent the infinite dimensional functional issue, sparse GP approx-

imation was also introduced, consequently all the algorithms are linearly scalable.

Experimental results show that the proposed model and inference are superior to

other state-of-the-art.

Fast Multi-resolution Segmentation for Nonstationary Hawkes Process : In Chap-

ter 6, the Hawkes process was generalized for nonstationarity. There exist various

methods to deal with nonstationary stochastic processes. In this thesis, the focus is

mainly on the segmentation method: divide the process into small sectors, estimate

the desired statistics and compute the proper partition positions. The issue with the

näıve segmentation method is that it is time consuming if based on the estimation

of the baseline intensity and triggering kernel. Instead, in Chapter 6 it is proposed
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to replace it with the estimation of cumulants which is faster to implement. Ad-

justing the desired resolution, the segmentation algorithm will output partitions at

different resolutions. This is the reason why it is named multi-resolution segmenta-

tion. Furthermore, the performance of the segmentation algorithm heavily depends

on the choice of hyperparameters in experiments. To facilitate the choice of hy-

perparameters, an approach similar to that in Chapter 3 is adopted to propose a

GP-MRS algorithm. The experiments on the vehicle collision dataset demonstrate

that the proposed segmentation algorithm can reveal the underlying time-varying

characteristics at different resolutions efficiently.

7.2 Limitations and Future Work

In this thesis, the focus is mainly on the 1-variate and 1-dimension Hawkes process.

However, the relative models and inference algorithms can be extended to multi-

variate and multi-dimensional Hawkes process in future work, e.g. the more general

spatial-temporal process model where the triggering kernel is defined on a multi-

dimensional space.

Another limitation is that in this thesis, the triggering kernel had to be positive

to guarantee the non-negativity of intensity function. Therefore, a new meaningful

generalization of the Hawkes process is the nonlinear Hawkes process:

λ(t) = ζ

(
µ(t) +

∑
ti<t

φ(t− ti)

)
(7.1)

where ζ(·) is a nonlinear function that guarantees the non-negativity of intensity.

In Chapters 4 and 5, the intrinsic reason that the GP function had to be passed

through a link function was the linearity of Hawkes process. With the generaliza-

tion to nonlinearity, the triggering kernel can be modelled with negative values.

This is especially meaningful in some application areas, e.g. neuroscience, because

the excitory and inhibitive prompting [56] between different neurons needs to be
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incorporated into the model simultaneously. The relative inference algorithms, e.g.

the methodology for sigmoid GP Hawkes process, can hopefully be applied to the

nonlinear Hawkes process model in future work.

A third limitation is the efficiency. Although efficiency is one of the key points

that are considered in this thesis. For example, the conjugacy is incorporated into

the model in Chapter 5 to make inference faster than that in Chapter 4. However,

all our methods are offline methods which means they cannot be applied to very

large dataset. In future work, some online learning algorithms can be proposed for

the nonparametric or nonstationary Hawkes process.

7.3 Concluding Remarks

This thesis attempts to generalize the classical Hawkes process in two tracks: non-

parametric and nonstationary. Frequentist and Bayesian approaches are considered

respectively. The presentation of this thesis is in a progressive structure providing

a step-by-step understanding of generalized Hawkes process. This thesis establishes

an important foundation for researchers in Hawkes process area but there are still

some interesting limitations which could be lucubrated in future work.
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